CivilFEM_geotechnical

  • Upload
    japv419

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

  • 7/28/2019 CivilFEM_geotechnical

    1/107

    CivilFEM Geotechnical

    Webinar

    Peter R. Barrett, M.S.C.E., P.E.

    2009 CAE Associates

  • 7/28/2019 CivilFEM_geotechnical

    2/107

    What is CivilFEM?

    CivilFEM is an integrated Pre- , Solu - and Post-processor add-on to

    traditional ANSYS developed byANSYSs Spain distributorINGECIBER

    AASHTO LRFDBridge Design Specifications 130

    NSYS/CivilFEM

    CANADA

    110 100120

    50

    40

    30

    (Western USA)

    2

    AAcceleration Coefficient

    SeismicZone

    MXICO

    0.19 and _ 0.29 4

  • 7/28/2019 CivilFEM_geotechnical

    3/107

    INGECIBER- CivilFEM Developer / ANSYS Partner

    Ingeciber S.A. is a CAE company and ANSYS Channel Partnerwith more than 20 years of experience using and developing

    CAE Software

    Ingecibers Quality Assurance System is ISO 9001 certified.

    Ansys, Inc and Ingeciber, S.A. have a long standing OEMAgreement and established a strategic alliance for FEA solutions

    in the construction industry. Some worldwide Customers:

    3

  • 7/28/2019 CivilFEM_geotechnical

    4/107

    ANSYS Today

    Worlds Largest Simulation Community

    >10,000 Total Customers

    >125 000 Commercial Seats

    >6,000 Total Customers

    >60 000 Commercial Seats

    >2,000TotalCustomers

    >10,000 Commercial Seats,

    >140,000 University Seats > 200 Channel Partners

    > 75 Industry Partners

    ,

    >70,000 University Seats >20 Channel Partners

    >80 Industry Partners

    4

  • 7/28/2019 CivilFEM_geotechnical

    5/107

    ANSYS/CivilFEM

    ANSYS/CivilFEM combines the world leading general

    purpose structural analysis features of ANSYS (ISO-9001)with high-end civil engineering-specific structural analysiscapabilities of CivilFEM (ISO-9001).

    Current Customers include: AREVA, AECOM, Parsons,Leslie E. Robinson, Westinghouse

    5

  • 7/28/2019 CivilFEM_geotechnical

    6/107

    CivilFEM & ANSYS

    6

  • 7/28/2019 CivilFEM_geotechnical

    7/107

    CivilFEM Help

    Interactive Online Help

    Examples Manuals Advanced Workshops

    Training Courses

    7

  • 7/28/2019 CivilFEM_geotechnical

    8/107

    Current CivilFEM Distributors

    8

  • 7/28/2019 CivilFEM_geotechnical

    9/107

    CAE Associates, Inc.

    One of first 4 ANSYS

    Channel Partners

    Since 1985 Engineering Co.

    Since 1981

    9

  • 7/28/2019 CivilFEM_geotechnical

    10/107

    CAE Associates CivilFEM / ANSYS Partner

    25 years Structural, Thermal and Fluid engineering consulting

    One of the original ANSYS Channel partners The US leader in ANSYS Finite Element Training

    Custom Training of ANSYS and CivilFEM

    10

  • 7/28/2019 CivilFEM_geotechnical

    11/107

    Sampling of CAE Consulting Services

    NIST Structural Fire Response and ProbableCollapse Sequence of the World Trade Center

    Towers Investigation Steam Generator Replacement in Nuclear

    Containment Buildings

    Pre-stressed Concrete Pipe Simulation Concrete Dam simulation to meet

    FERC /Corps of Engineers licensing

    11

  • 7/28/2019 CivilFEM_geotechnical

    12/107

    CAE Associates Senior Technical Staff

    Nicholas M. Veikos, Ph.D., President

    Peter R. Barrett, M.S.C.E., P.E., Vice President

    Michael Bak, Ph.D., Project Manager

    Patrick Cunningham, M.S.M.E., Project Manager

    Steven Hale, M.S.M.E., Project Manager

    James Kosloski, M.S.M.E., Project Manager

    Hsin-Hua Tsuei, Ph.D., CFD Manager

    Jonathan Masters, Ph.D., Project Manager

    George Bauer, M.S.M.E., Project Manager

    Eric Stamper, M.S.M.E., Project Manager

    Michael Kuron, M.S.M.E., Project EngineerLawrence L. Durocher, Ph.D., Director

    12

  • 7/28/2019 CivilFEM_geotechnical

    13/107

    ANSYS Strengths

    Nonlinear Stress Analysis Contact

    Plasticity

    Creep

    Large Deflection P-Delta Effects

    Element Birth and Death

    Full Element Library (over 200)

    Beams, Pipes & Shells 2D and 3D Solids

    Springs, Contact, etc

    Dynamic Analysis

    Response Spectrum

    Nonlinear Transient Dynamics Thermal-Stress Analysis

    Indirect and direct coupled field simulations

    Large Model Simulations

    Solvers, meshing, Postprocessing, Graphics

    13

  • 7/28/2019 CivilFEM_geotechnical

    14/107

    ANSYS Strengths Development 12.0

    14

  • 7/28/2019 CivilFEM_geotechnical

    15/107

    CivilFEM Strengths

    CivilFEM Capabilities

    Entire suite of ANSYS capabilities including nonlinear analysisand dynamics

    Built-in Section Properties, Material Models and Code Checking

    Industry Specific CivilFEM Modules Nonlinear Bridge Simulation

    Pre-stressed Concrete

    Geotechnical Applications Nuclear Applications

    15

  • 7/28/2019 CivilFEM_geotechnical

    16/107

    CivilFEM

    GeotechnicalModule

  • 7/28/2019 CivilFEM_geotechnical

    17/107

    Introduction

    The geotechnical module is one of 4 add-on ANSYS CivilFEM modules

    Geotechnical, Nonlinear Bridge, Advanced Pre-stress, and Nuclear

    The ~CFACTIV command is used to activate and deactivate each module.

    ~CFACTIV,GETC,Y

    17

  • 7/28/2019 CivilFEM_geotechnical

    18/107

    Geotechnical Capabilities Summary

    Materials library (soils and rocks)

    Layered terrains Soil foundation stiffness (ballast module)

    Retaining wall design / analysis

    Seepage analysis

    Slope stability analysis

    Tunneling -Hoek & Brown failure criteriaEarth pressures

    Terrain Initial Stress

    Foundation Piles

    18

  • 7/28/2019 CivilFEM_geotechnical

    19/107

    Geotechnical Materials

    ~CFMP command.

    This command defines the soil or rock material properties in ANSYSand CivilFEM.

    It can be applied using one of the following options: From library: reads from the library the material properties for a given

    material reference.

    ~CFMP,1,LIB,SOIL,,...

    ~CFMP,1,LIB,ROCK,,...

    User defined: the material looses its library reference and the user can

    change any of its properties.

    ~CFMP,1, USER

    Material Include Standard ANSYS as well as unique CivilFEM Materials

    19

  • 7/28/2019 CivilFEM_geotechnical

    20/107

    Soil Material Properties

    Soil Library

    ~CFMP,1,LIB,SOIL,,...

    Materialnumber

    Soilclassificationaccording toCasagrand

    Delete materials

    Modify selectedmaterial

    List of definedmaterials

    Save materials

    Copy materials

    20

  • 7/28/2019 CivilFEM_geotechnical

    21/107

    Rock Material Properties

    Rocks library

    ~CFMP,1,LIB,ROCK,,...

    Materialnumber

    Rockclassifications

    Copy materials

    Save materials

    Delete materials

    Modify selectedmaterial

    List of definedmaterials

    21

  • 7/28/2019 CivilFEM_geotechnical

    22/107

    Geotechnical Material Wizard

    22

  • 7/28/2019 CivilFEM_geotechnical

    23/107

    Soil and Rock Material Properties

    Soil /Rock properties are divided into 7 different groups: General properties:

    common for all the materials (number, reference, type,) Structural analysis properties: .

    Static and dynamic properties, material behavior, etc.

    Specific weight properties: specific weight, density, porosity, etc.

    Properties: test parameters, materials laws, etc.

    Grain-size or Hoek & Brown properties : grain-size parameters and Atterberg limits or Hoek & Brown & Dilatancy parameters

    Correlations: relationships between geotechnical parameters.

    FLAC3D: Flac3D properties.

    Soil Menu

    Rock Menu

    23

  • 7/28/2019 CivilFEM_geotechnical

    24/107

    Soil and Rock Material Properties

    Structural Analysis

    properties are dividedinto: Elasticity modulus,

    Poisson ratio anddensity used for thestructural analysis.

    Plastic behavior Static properties

    Seismic properties

    24

  • 7/28/2019 CivilFEM_geotechnical

    25/107

    Soil and Rock Material Properties

    Specific Weight

    properties are dividedinto: Specific weights

    Density

    Porosity

    Water content

    25

  • 7/28/2019 CivilFEM_geotechnical

    26/107

    Soil and Rock Material Properties

    Material Properties are

    divided into: Test properties

    Mohr-Coulomb parameters

    Drucker-Prager parameters

    Mohr-Coulomb in plainstrain models parameters

    Earth pressure data Seepage

    26

  • 7/28/2019 CivilFEM_geotechnical

    27/107

    Soil and Rock Material Properties

    Grain-size properties are grouped into:

    Grain-size parameters Atterberg limits

    These properties areonly defined for soils

    27

  • 7/28/2019 CivilFEM_geotechnical

    28/107

    Soil and Rock Material Properties

    Hoek & Brown properties are grouped into:

    Hoek & Brown parameters Dilatancy parameters

    These properties areonly defined for rocks

    28

  • 7/28/2019 CivilFEM_geotechnical

    29/107

    Soil and Rock Material Properties

    The correlations can be selected from the CivilFEM library or from a user

    defined file. Select between CivilFEMcorrelations or user defined

    Relates the SPT valuewith the elasticity

    module applying thecorrelation to thespecified property

    Apply

    29

  • 7/28/2019 CivilFEM_geotechnical

    30/107

    Correlations

    User defined correlations

    5- Correlationnumber 6- Function

    InternationalSystemUNITS

    7- Comment(Optional)

    The right hand menuassists in writing a

    correlation4- Select newcorrelation

    30

  • 7/28/2019 CivilFEM_geotechnical

    31/107

  • 7/28/2019 CivilFEM_geotechnical

    32/107

    CivilFEM Soil Materials Example Help

    32

  • 7/28/2019 CivilFEM_geotechnical

    33/107

    Terrain

    Layered Terrain Definition

    TerrainNumber of

    layers.(Maximum,

    20)

    number name

    Pitch

    Terraingeneralproperties

    Location

    WaterTable

    ThicknessSurfaceLoad

    LayerProperties

    Layernumber

    Material

    Horizontal Ballast

    Module

    Coulomb theoryfor earthpressure

    calculation

    33

  • 7/28/2019 CivilFEM_geotechnical

    34/107

    Layered Terrains Definition

    Allows the definition of soils without having to discretize them as finite

    elements in the model.

    New Terrain

    Modify selected Terrain

    Delete Terrain

    Copy Terrain

    Properties list

    34

  • 7/28/2019 CivilFEM_geotechnical

    35/107

    Earth Pressures,Ballast Module, Soil

    Foundation Stiffness

  • 7/28/2019 CivilFEM_geotechnical

    36/107

    Automated Earth Pressures

    CivilFEM Model:Earth column contribution over this point

    At rest earth pressure

    Active earth pressure Passive earth pressure

    in

    E0 K0 ih i K0 qi1

    The soil weight on the selected elements of the model.

    Dry and flooded earth

    ELEMENT TYPES:

    1

    1

    Beams Shells

    Solids Y

    Surface elements:

    3D BEAM ELEMENTS5

    2

    5

    SHELL ELEMENTS

    Z X Y

    Z X

    xz

    2

    13

    xy

    z

    4

    6

    y

    4

    3

    1

    36

  • 7/28/2019 CivilFEM_geotechnical

    37/107

    Earth Pressures

    ACTIVE AND PASSIVE EARTH PRESSURES CALCULATION:

    Calculated considering: Earth column contribution over this point.

    Cohesion

    Surface load over the terrain.

    q

    2q L1 L2c L1 L2 K

    2h L KE K hqhcn 1

    in1

    i1 h i i

    h 1

    h2Layer2

    Layer1

    Kh: Horizontal earth pressurecoefficient due to the earth weight

    hn-1Layern-1

    L 1

    Khc: Horizontal earth pressurecoefficient due to cohesion

    Khq: Horizontal earth pressurecoefficient due to the surface load

    ELayern

    L 2

    L +L2 22

    37

  • 7/28/2019 CivilFEM_geotechnical

    38/107

    Ballast Module

    CivilFEM calculates an estimation value of the ballast module (soil

    foundation stiffness), that allows approximating the elastic soil model(E and ) by means ofWinklers model (beam on an elasticfoundation).

    Calculation steps:1. Model definition (materials,

    elements, beam & shellproperties)

    2. Terrains definition

    3. Select the elements and nodesthat make up the foundation

    4. Ballast module calculation

    5. Ballast module application

    38

  • 7/28/2019 CivilFEM_geotechnical

    39/107

    Ballast Module

    Calculates the ballast module for a foundation previously defined by the

    user. The elements and nodes that make up the foundation must beselected beforehand.

    ~EFSCALC, UCIM, UTER

    Enter foundationand terrainnumbers

    39

  • 7/28/2019 CivilFEM_geotechnical

    40/107

    Ballast Module: Results

    Plot and list results Close the

    window

    Element

    results

    Noderesults

    Foundationnot created List

    resultsActivatedfoundation

    Deactivatedfoundation

    Results scale

    40

  • 7/28/2019 CivilFEM_geotechnical

    41/107

    Retaining Walls

  • 7/28/2019 CivilFEM_geotechnical

    42/107

    Retaining Wall Calculation

    Non-linear Analysis

    Construction Sequence Automated Simulation changing with excavation level

    It takes into account

    the soil-structureThe wall may be

    considered as a

    interaction usingnon-linear springs

    with contact elements

    non-linear structure

    and analyzed by the

    non-linear module of

    CivilFEM

    42

  • 7/28/2019 CivilFEM_geotechnical

    43/107

    Retaining Wall Calculation

    Calculation of Sheet Piles 2D (automatic wizard) -3D

    Non-linear construction sequence analysis One or two sheet piles can be analyzed simultaneously

    Simulation of anchors, water level, layered soils, other applied loads.

    The excavation or

    backfilling process can

    be visualized in eachcalculation step.

    43

  • 7/28/2019 CivilFEM_geotechnical

    44/107

    Retaining Wall Calculation

    Calculation of Sheet Piles 2D (automatic wizard) -3D

    With any ANSYS/CivilFEM cross section Interaction with other structures

    44

  • 7/28/2019 CivilFEM_geotechnical

    45/107

    Retaining Wall Calculation

    The systems generated may consist of one or two walls that can beintegrated inside other ANSYS models like a subset.

    The model is solved by means of an evolving calculation, where eachcalculation stage represents a step in excavation or backfill.

    The reinforcement of the retaining walls can be later designed byCivilFEM.

    Applicable to any ANSYS/CivilFEM cross section

    45

  • 7/28/2019 CivilFEM_geotechnical

    46/107

    Retaining Walls: Modeling

    The retaining wall is modeled with 2D

    beam elements applying: Boundary conditions Actions

    The interaction with the terrain issimulated by the action oftwo pairs of

    springs (LINK1 element) linked togaps (work in compression)

    Each pair of springs is in charge ofreproducing :

    Passive earth pressure Active earth pressure

    (Earth Pressures describedpreviously)

    46

    Retaining Wall Modeling

    PPT1 PPT2

    APT1APT2

    Terrain 1 Terrain 2

    Well graduated gravel

    Silt

    Peat (Low)

    The soil is defined as layered terrain

  • 7/28/2019 CivilFEM_geotechnical

    47/107

    Retaining Walls: Earth Pressure

    Material behavior law

    The introduction of the material law for each spring is carried out using anonlinear elastic behavior model

    -(E0-Ea)Fd

    HBM-(Ep-E0)

    47

  • 7/28/2019 CivilFEM_geotechnical

    48/107

    Retaining Walls: Calculation Procedure

    ~WALLINI

    Initializes the data in the retaining wall analysis

    GeneralProperties

    Wall 1Properties

    Wall 2Properties

    48

  • 7/28/2019 CivilFEM_geotechnical

    49/107

  • 7/28/2019 CivilFEM_geotechnical

    50/107

    Retaining Walls: Calculation Procedure

    ANCHORAGE TYPES

    Articulated

    (ANCHTYPE = 1)

    Fixed(ANCHTYPE = 0)

    The anchorage iscreated as a beamwith one of its endsfixed to the soil.

    A support will beplaced on the wall.The node will bemoved to its initial

    location.

    Delete

    (ANCHTYPE = -1)

    All anchorages at

    Fixed with nomovement

    restoringthe chosen level willbe deleted at thisconstruction step.

    (ANCHTYPE = 2)

    A support will beplaced on the wall.

    50

  • 7/28/2019 CivilFEM_geotechnical

    51/107

    Seepage Analysis

  • 7/28/2019 CivilFEM_geotechnical

    52/107

    Seepage Analysis Capabilities

    Calculate hydraulic heads and pore water pressures.

    Calculate filtered flows through boundaries.

    Obtain the water table for 2D models.

    Export the obtained pore water pressure to slope stability analysis. Thefinite element mesh used in both analysis can be different.

    Darcys law with anisotropy of the permeability coefficient (differentpermeability in x, y, z directions).

    Hv - K H , v - K H , v - Kzzzy yyx xx zx y

    52

  • 7/28/2019 CivilFEM_geotechnical

    53/107

    Seepage Analysis: Boundary Conditions

    Impermeable surface:

    Upstream surface: H = H0 Seepage surface: H = geometric height

    Downstream surface: H = H1

    y

    0n

    H

    Saturation surfaceH

    H0 An

    0

    Upstream surfaceH(x,y) = H Seepage surface

    H(x,y) = y(x)

    xH1B

    H Downstream surface

    H(x,y) = H1

    53

    Impermeable surface

    n

  • 7/28/2019 CivilFEM_geotechnical

    54/107

    Seepage Analysis: CivilFEM Elements (II)

    Equivalence table of available element types

    ANSYS Thermal Solverfor Seepage AnalogyCivilFEM Seepage Solver

    54

    CivilFEM SEEPAGEElements

    ANSYS STRUCTURALElements

    ANSYS THERMALElements

    2D PLANE 42 - SEEP PLANE 42 PLANE 55

    3D SOLID 45 - SEEP SOLID 45 SOLID 70

  • 7/28/2019 CivilFEM_geotechnical

    55/107

    Seepage Analysis: CivilFEM Elements (III)

    Building a model for CivilFEM seepage solver:

    The model is created using ANSYS structural elements

    Element types are automatically changed by the solver.

    ANSYS/Structural Elements CivilFEM Elements

    PLANE 42 PLANE 42 SEEPSOLID 45 SOLID 45 SEEP

    Available degrees of freedom:

    55

    ANSYS D.O.F. CivilFEM D.O.F.UX H (Hydraulic head)

    UY Not Used

    UZ Not Used

  • 7/28/2019 CivilFEM_geotechnical

    56/107

    Seepage Analysis: CivilFEM Elements (IV)

    KL

    x

    I

    J

    y

    I

    J4 n ode s t r i a n g l e o p t i on

    Degen era t ed shap e

    x

    y

    Se c ond gr ade sh ape f u n ct i o n

    Fou r no d es t w o -di m ens i ona l e l e m en t

    Triangular prism

    M,N,O,PBasi c shape

    I

    K,L

    TetrahedronJ

    Thr ee -di m ens ion a l

    56

  • 7/28/2019 CivilFEM_geotechnical

    57/107

    Seepage Analysis: Saturation Line

    DAM EXAMPLE:

    The saturation line has two end points that must comply with the followingboundary conditions: a) Fixed: Point A in the figure

    b) Sliding along a seepage surface: Point B in the figure

    t

    ySaturation line

    H0y(x) Seepage surface

    A

    xH(x,y)=H1

    H(x,y)=y(x) H1

    xa

    ByAyyy

    y1 y

    B432

    Hn = 0

    Hn = 0

    2D Seepage (Without drains)

    57

  • 7/28/2019 CivilFEM_geotechnical

    58/107

    Slope Stability

  • 7/28/2019 CivilFEM_geotechnical

    59/107

    Slope Stability

    Slope stability can be calculated by means of two methods, conceptuallydifferent:

    1. CLASSICAL METHODS Fellenius

    Bishop

    Simplified and Modified Janbu

    2. FINITE ELEMENT METHOD Equivalent results to the one obtained with classical methods.

    59

  • 7/28/2019 CivilFEM_geotechnical

    60/107

    Slope Stability

    Fellenius Method (Swedish or independent slice method): Sliding surface: CIRCLE.

    Independent slices.

    Equilibrium of moments in relation to the circle center.

    Recommended: cohesive homogeneous materials.

    NON iterative process

    N calculation: NWcoskWsinDx sinDy cos

    Bishops Method: Sliding surface: CIRCLE.

    Equilibrium of moments in relation to the circle center.

    Iterative process N depends on the safety factor F.

    WcLsinuLsintanDF

    Ny

    F

    60

    cossintan

  • 7/28/2019 CivilFEM_geotechnical

    61/107

    Slope Stability

    Janbus Simplified Method: Sliding surface: ANY POLYGONAL.

    Forces equilibrium.

    Iterative process N calculation is the same as for the Bishop s method.

    61

    Sl S bili

  • 7/28/2019 CivilFEM_geotechnical

    62/107

    Slope Stability

    2. FINITE ELEMENT METHOD:

    Safety factor F c (n u)tg. a. a

    n = Normal stress on the bottomof the slice

    = Tangential stress on the

    bottom of the slice

    a = Slice width

    u = Pore water pressure-.378E+ 07-.336E+ 07-.294E+ 07-.252E+ 07-.210E+ 07-.168E+ 07-.126E+ 07-836853-4167583338

    62

    Sl St bilit

  • 7/28/2019 CivilFEM_geotechnical

    63/107

    Slope Stability

    How to perform a stability analysis?

    Create the model (geometry, mesh, loads)

    Solve

    Capture the model for slope stability

    Slope stability needed data: Sliding surfaces definition

    Pore water pressure Solve slope stability

    Postprocess results

    Only for FEM Analysis

    Differences among classical methods

    63

    Sl St bilit

  • 7/28/2019 CivilFEM_geotechnical

    64/107

    Slope Stability

    Capture the model for slope stability

    ~SLPIN, N1, N2, N3 ~SLPINK K1, K2, K3

    Valid sliding surface

    Invalid sliding surface

    jobname.db jobname.cfdbjobname.slp

    64

    Sl St bilit

  • 7/28/2019 CivilFEM_geotechnical

    65/107

    Slope Stability

    Results Plot press.lines

    Slidingdirection

    Previous andnext Circlesand Centers

    Plot completecircles

    Plot loads Sliding surf.

    Listnumber andsafety factor

    Min Coef. Export plotSafety Fact. map

    Number ofcolors

    Maximum safetyfactor shown

    65

  • 7/28/2019 CivilFEM_geotechnical

    66/107

    Tunneling

    66

    Wi d f T l D i

  • 7/28/2019 CivilFEM_geotechnical

    67/107

    Wizard for Tunnel Design

    Tunnel section PLOT NO. 1-909.174-878.511

    -847.848

    -817.185

    -786.522-755.859

    -725.196

    -694.533

    -663.87-633.207

    COL 3

    Tensin vertic al. Frente de avanc e

    Longitudinal

    Section

    Vertical Stress. Tunnel Advancement

    Forces and Moments on

    Concrete

    COL 1

    COL

    PLOT NO. 1

    -.018494

    -.014481

    -.010468

    -.006455

    -.002443.00157

    .005583

    .009596

    .013609

    .017621

    Forces acting on

    concrete tunnel

    Movim iento vertic al. Frente de avanc eVertical Movement. Tunnel Advancement

    Longitudinal

    Section

    67

    Underground Structures (Tunnels)

  • 7/28/2019 CivilFEM_geotechnical

    68/107

    Underground Structures (Tunnels)

    Element Birth and Death capability (non-linear construction sequenceanalysis)

    1

    11

    CERROGORDO

    68

    Underground Structures (Tunnels)

  • 7/28/2019 CivilFEM_geotechnical

    69/107

    Underground Structures (Tunnels)

    Terrain Initial Stress

    Hoek & Brown Failure Criteria (rocks) Plastic Constitutive models: 2D/3D Drucker-Prager and Mohr-Coulomb

    Element Birth and Death capability (non-linear construction sequenceanalysis)

    69

    Wizard for Tunnel Design

  • 7/28/2019 CivilFEM_geotechnical

    70/107

    Wizard for Tunnel Design

    70

    Wizard for Tunnel Design

  • 7/28/2019 CivilFEM_geotechnical

    71/107

    Wizard for Tunnel Design

    71

  • 7/28/2019 CivilFEM_geotechnical

    72/107

    Hoek & BrownFailure Criterion

    Hoek & Brown Failure Criterion

  • 7/28/2019 CivilFEM_geotechnical

    73/107

    Hoek & Brown Failure Criterion

    This tool offers the possibility to work with rock foundation models,

    satisfying the Hoek and Browns failure model, original (1980) or modified(1992). RMR Rating used to select failure model

    The procedure followed by CivilFEM, is based on using, at each load step,a Drucker-Pragermaterial, whose properties change according to its loadlevel.

    73

    Hoek & Brown Failure Criterion

  • 7/28/2019 CivilFEM_geotechnical

    74/107

    Hoek & Brown Failure Criterion

    HOEK & BROWNS CRITERION VALIDITY

    The Hoek and Browns criterion is valid only forlow confinementpressures.

    In rock mechanics, four structural situations of the rock massifs aregenerally distinguished according to the defects and discontinuities shown.

    Group I:Intact Rock

    Rocky Massif State Classification

    m 3 sc c

    1 3

    Group II:One single discontinuity

    Group III:Two discontinuities

    c: Compression resistance of thematrix rock.

    Group IV:Several discontinuities

    Group V:

    m,s: Constants that depend on thecharacteristics of the rock and on itscracking state

    Fractured Massif

    74

    Hoek & Brown Failure Criterion

  • 7/28/2019 CivilFEM_geotechnical

    75/107

    Hoek & Brown Failure Criterion

    MODEL OPERATION

    For each element in the model a stress state is read (1, 3)

    Using Hoek & Brown criteria, the parameters of Mohr Coulomb areobtained, and from this values, the Drucker Prager equivalent parameters.

    Hoek-Brown c, 1, 3

    Mohr-Coulomb

    Drucker-Prager

    Solve

    75

    Hoek & Brown Failure Criterion

  • 7/28/2019 CivilFEM_geotechnical

    76/107

    Hoek & Brown Failure Criterion

    CALCULATION PROCEDURE

    After creating the model, the Hoek & Brown solver should be used.

    Read materialproperties at theend of a Hoek &Brown analysis, forother calculations.

    Write materialproperties at theend of the Hoek &Brown analysis

    76

  • 7/28/2019 CivilFEM_geotechnical

    77/107

    Terrain InitialStress

    Terrain Initial Stress

  • 7/28/2019 CivilFEM_geotechnical

    78/107

    Terrain Initial Stress

    Develop Stress with no Strain

    Gravity

    Gravity

    Terrain Initial Stress

    78

    Terrain Initial Stress

  • 7/28/2019 CivilFEM_geotechnical

    79/107

    Terrain Initial Stress

    In order to simulate excavation processes and real terrain behavior, theinitial stresses (without strain) can be considered.

    Terrain Initial Vertical Stress at each point is calculated regarding theweight of terrain above the point.

    n

    V

    ih i

    i1

    Terrain Initial Horizontal Stress at each point depends on the verticalstress.

    VH ko

    V H

    H

    79

    Terrain Initial Stress

  • 7/28/2019 CivilFEM_geotechnical

    80/107

    Terrain Initial Stress

    Initial Stress is calculatedusing the ~TIS command.

    It will create a file(jobname.IST), with thestresses for each element.

    Gravity direction needs to bespecified

    80

  • 7/28/2019 CivilFEM_geotechnical

    81/107

    Foundation Piles

    Deep Foundations

  • 7/28/2019 CivilFEM_geotechnical

    82/107

    Deep Foundations

    Pile Cap Wizard:Automatic generation of rectangular, polygonal or circular pile groups

    82

    Piles

  • 7/28/2019 CivilFEM_geotechnical

    83/107

    Piles

    Driven piles

    Excavated/Drilled foundations

    Micropiles Example Pile Cap Load Test Load Test Reinforcement

    Design

    83

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    84/107

    Foundation Piles

    Geometry of the pile cap: Polygonal or circular

    DIAPIL

    Y

    1

    X2

    3 4

    5

    HeightEn

    HeightT (1) WidPLA

    HeightPil

    LenPIL

    HeightT (NumStr)

    HeightT (NumStr+1)

    Z

    X

    84

    Poligonal pile-wailing

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    85/107

    ou da o es

    Rectangular pile cap DistPilx (1...Npx-1)

    _

    _

    |

    DExtRig

    DExtTop

    DIAPIL

    Y

    (3,4)Piles identified with twonumbers (I,J):

    Horizontal and vertical

    (I,J)

    DistPily(1...Npy-1)

    _

    _ (1,1)

    PosXCol

    PosYCol

    Column

    DExtBot

    X

    (1,2)

    (2,2)

    DExtLef

    HeightEnHeightPil

    HeightT (1)WidPLA

    LenPIL

    HeightT (Num Str)

    HeightT (Num Str+1)

    Z

    X

    Rectangular wiling of Npx x Npy piles

    85

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    86/107

    Terrain definition: Cohesive Soils

    50-100 20-25

    Hard 200-400 15-30 30-35 30-50

    Cohesionless Soils

    Low 4-10 28-30 0-20

    86

    High 30-50 36-41 0-20

    Consistency qu (kPa) NSPT () c (kPa)

    Very soft 30-50 2-4 15-20 0-10

    Soft 4-8 10-20

    Medium 100-200 8-15 25-30 20-30

    Very hard >400 >30 >35 >50

    Compacity NSPT () c (kPa)

    Very low 0-4 50 >41 0-20

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    87/107

    Internal Friction Angle vs. Cohesion

    j ()

    Limit can be changed

    40

    45

    Cohesionless soils

    20

    25

    30

    35

    (c , j )L L

    5

    10

    15Cohesive soils

    CivilFEM's soil clasif ication

    010 20 30 40 50 60 70 80 900 c (kPa)

    87

    Foundation Piles Force - Deflection

  • 7/28/2019 CivilFEM_geotechnical

    88/107

    Load capacity: Cohesive soils Skin friction and point resistance

    LOAD

    Q

    Q

    QT

    QS

    P

    wS

    wP SETTLEMENT, w

    Load capacity vs. settlement in piles

    88

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    89/107

    Load capacity: Cohesive soils Skin friction

    0.6

    0.7

    a

    =

    fs/Cu

    0 200 400 600 800

    Undrained shear strength, Cu (kPa)

    0.2

    0.3

    0.4

    0.5

    Piles adhesion factor

    g (%)fS

    1.0

    1.5

    2.0

    aCu ~ 50 kPaaCu~ 200 kPa

    ws = g. Dp

    Shaft deformability factorg (%)

    600 800

    Undrained shear strength, Cu (kPa)

    0 200 4000.0

    0.5

    aCu~ 100 kPa

    Value can be changed

    89

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    90/107

    Load capacity: Cohesive soils Point resistance

    Values can be changed

    90

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    91/107

    Load capacity: Cohesionless soils

    Skin friction

    Point resistanceValues can be changed

    91

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    92/107

    Pile capacity: Depends on the piles length

    z1zp Q QS P

    z2

    z3

    znL

    -z

    92

    -z

    Ultimate static pile capacity

    Foundation Piles Base Soil

  • 7/28/2019 CivilFEM_geotechnical

    93/107

    Point effect correction

    a .D1 p

    Passive zone

    (a)_

    _La

    _

    (b) Lb

    a .D2 p Active zone

    _(c)

    Lc

    a .D3 p Security zone

    Point resistance development

    93

    Foundation Piles Grouping Effect

  • 7/28/2019 CivilFEM_geotechnical

    94/107

    Grouping effect correction

    h _1

    (w, f)

    f

    (h .w, h .f)w f

    f*

    Groupping effect

    Unit bearing capacity is reducedas settlement increases

    Settlement, ww w*

    94

    Foundation Piles Stress Check

  • 7/28/2019 CivilFEM_geotechnical

    95/107

    Mean Design Stress Checking Structural Capacity vs. Pile diameter

    sc(MPa)

    StructuralCapacity

    Extraordinary Loads (Earthquake, etc)7

    6

    8

    9Canadian code (Extraordinary loads)

    Recommended for

    5French Code

    Recommendedfor Service Loads

    4

    Spanish Construction code NTE3

    2Recommended forsingle pile(Service Loads)

    1 2.00

    Dp (m)

    0.400.20 0.60 0.80 1.00 1.20 1.40 1.60 1.80

    Recommended Structural Capacity

    95

    Foundation Piles FEA Model

  • 7/28/2019 CivilFEM_geotechnical

    96/107

    Equivalent springs

    Horizontal skin springs Horizontal Ballast module:

    Chadeysson

    Vertical skin springs

    Vertical point springs Finite Element Node

    Skin Vertical Spring

    Skin Horizontal Springs

    x

    y

    z

    Finite Element Node

    Point Vertical Spring

    Springs on nodes

    96

    Foundation Piles - Loads

  • 7/28/2019 CivilFEM_geotechnical

    97/107

    Loads on Columns: Forces and Moments

    F z Z

    Other loads:Mz

    Pressure on slabMx

    X Y

    My

    F x

    Self weight

    Seismic

    accelerationF y

    Forces and Moments sign convention

    97

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    98/107

    Reinforcement Groups:

    Rigid Cap Flexible Cap

    Top side Top side

    Secondary reinforcement A2s Secondary reinforcement A2sPunching reinforcemente A2p

    Bottom side

    Closestirrups

    Bottom side

    Primary reinforcement A1p Secondary reinforcement A1s Secondary reinforcement A1sPunching reinforcemente A1p

    Rigid wailing: Reinforcements Flexible wailing: Reinforcements

    98

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    99/107

    99

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    100/107

    100

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    101/107

    101

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    102/107

    102

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    103/107

    103

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    104/107

    104

    Foundation Piles

  • 7/28/2019 CivilFEM_geotechnical

    105/107

    105

    Integration with FLAC3D

  • 7/28/2019 CivilFEM_geotechnical

    106/107

    106

    Foundations & Dams

  • 7/28/2019 CivilFEM_geotechnical

    107/107

    Footing and continuous foundations: - 2D/3D soil-structure interaction models

    Dams