28
ChIPseq Analysis BaRC Hot Topics Feb 24 th 2015 BioinformaBcs and Research CompuBng Whitehead InsBtute hGp://barc.wi.mit.edu/hot_topics/

ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

ChIP-­‐seq  Analysis  

 BaRC  Hot  Topics  -­‐  Feb  24th  2015  

BioinformaBcs  and  Research  CompuBng  Whitehead  InsBtute  

 hGp://barc.wi.mit.edu/hot_topics/  

Page 2: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Before  we  start:  

1.  Log  into  tak  (step  0  on  the  exercises)  2.  Go  to  your  lab  space  and  create  a  folder  for  

the  class  (see  separate  hand  out)  3.  Connect  to  your  lab  space  through  the  wi-­‐

htdata  network  and  open  the  folder  you  created  

2  

Page 3: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Outline  •  ChIP-­‐seq  overview  •  Quality  control  •  Experimental  design  •  Mapping  

– Map  reads  –  Remove  unmapped  reads    and  convert  to  bam  files  –  Check  the  profile  of  the  mapped  reads  

•  Peak  calling  •  More  detail  about  MACS  opBons  •  Linking  peaks  to  genes  •  Visualizing  ChIP-­‐seq  data  with  ngsplot  

3  

Page 4: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

ChIP-Seq overview  

4  Park,  P.  J.,  ChIP-­‐seq:  advantages  and  challenges  of  a  maturing  technology,  Nat  Rev  Genet.  Oct;10(10):669-­‐80  (2009)  

Page 5: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Steps in data analysis  

5  

1.  Quality  control  

2.  EffecBve  mapping                Treat  IP  and  control  the  same  way        

(preprocessing  and  mapping)    3.      Peak  calling              i)    Read  extension  and  signal  profile  

generaBon              ii)  Peak  assignment  

Pepke,  S.  et  al.  ComputaBon  for  ChIP-­‐seq  and  RNA-­‐seq  studies,    Nat  Methods.  Nov  (2009)  

Page 6: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Experimental  design  

•  Include  a  control  sample.  •  If  the  protein  of  interest  binds  repeBBve  regions,  using  paired–end  sequencing  may  reduce  the  mapping  ambiguity.  Otherwise  single  reads  should  be  fine.  

•  Include  at  least  two  biological  replicates.    If  you  have  replicates  you  may  want  to  use  the  parameter  IDR  “irreproducible  discovery  rate”.  See  us  for  details.  

•  If  only  a  small  percentage  of  the  reads  maps  to  the  genome,  you  may  have  to  troubleshoot  your  ChIP  protocol.  

 

6  

Page 7: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Data  that  we  will  use  on  the  hands  on  the  exercises  

•  ENCODE  human  ChIP-­‐seq  experiment  – EncodeBroadHistoneHepg2H3k4me3  – EncodeBroadHistoneHepg2Control  

•  For  quality  control    and  mapping  we  will  use  a  subset  of  the  data  (10%)  

•  For  running  MACS  we  will  use  the  full  set  but  only  chr1  reads  

7  

Page 8: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Quality control (before read mapping)

See Hot Topics: Quality Control and Mapping Reads

•  Run  fastqc  –  Look  at  output  and  determine  

1.  What  type  of  quality  encoding  (Illumina  versions)  your  reads  have  

2.  If  you  need  to  remove  adapter,  trim  reads,  filter  reads  based  on  quality  etc.  

   

Input  qualiBes   Illumina  versions  

-­‐-­‐solexa-­‐quals   <=  1.2  

-­‐-­‐phred64   1.3-­‐1.7  

-­‐-­‐phred33   >=  1.8  

8  

Page 9: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  Step  1:  Quality  control  

 Run  step  1  commands  (fastqc)          bsub  fastqc  Hepg2Control_subset.fastq        bsub  fastqc  Hepg2H3k4me3_subset.fastq  

         

9  

Page 10: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Fastqc  Output  

10  

Page 11: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Mapping  

•  We  have  to  map  reads  to  the  genome.    The  mapping  solware  doesn’t  have  to  know  about  splicing.  – BowBe,  bowBe2  (allows  gaps)  are  good  choices  – Bwa  (allows  gaps)  is  fine  too  

•   Treat  IP  and  control  samples  the  same  way  during  preprocessing  and  mapping.  

11  

Page 12: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  Step  2:  Mapping  •  bsub  bowBe2  -­‐-­‐phred33-­‐quals  -­‐N  1  -­‐x  /nfs/genomes/

human_gp_feb_09_no_random/bowBe/hg19      -­‐U  Hepg2Control_subset.fastq  -­‐S  Hepg2Control_subset_hg19.N1.sam  

•  bsub  bowBe2  -­‐-­‐phred33-­‐quals  -­‐N  1  -­‐x  /nfs/genomes/human_gp_feb_09_no_random/bowBe/hg19      -­‐U  Hepg2H3k4me3_subset.fastq    -­‐S  Hepg2H3k4me3_subset_hg19.N1.sam  

 -­‐-­‐phred33-­‐quals      Because  we  have  Illumina  1.9    -­‐N  <int>  max  #  mismatches  in  seed  alignment;  can  be  0  or  1  (default=0)                -­‐x    path  to  the  bowBe2  index        -­‐U  input  sequence    -­‐S  output.sam  

12  

Page 13: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  Steps  3:  Remove  unmapped  reads  and  convert  to  BAM.  Sort  and  index  the  bam  file.  

Remove  unmapped  reads  •  bsub  "samtools  view  -­‐hS  -­‐F  4  Hepg2Control_subset_hg19.N1.sam  |  samtools  view  -­‐b  -­‐S  -­‐  >  

Hepg2Control_subset_hg19.N1.mapped_only.bam"  •  bsub  "samtools  view  -­‐hS  -­‐F  4  Hepg2H3k4me3_subset_hg19.N1.sam  |  samtools  view  -­‐b  -­‐S  -­‐  >  

Hepg2H3k4me3_subset_hg19.N1.mapped_only.bam"  Sort  reads  •  bsub  samtools  sort  -­‐T  Control_subset  -­‐o  Control_subset_hg19.N1.mapped_only.sorted.bam    

Hepg2Control_subset_hg19.N1.mapped_only.bam  •  bsub  samtools  sort  -­‐T  H3k4me3_subset  -­‐o  H3k4me3_subset_hg19.N1.mapped_only.sorted.bam    

Hepg2H3k4me3_subset_hg19.N1.mapped_only.bam      -­‐T  PREFIX    Write  temporary  files  to  PREFIX.nnnn.bam  

 -­‐o  FILE            Write  final  output  to  FILE  rather  than  standard  output  Index  reads  •  bsub  samtools  index  Control_subset_hg19.N1.mapped_only.sorted.bam  •  bsub  samtools  index  H3k4me3_subset_hg19.N1.mapped_only.sorted.bam  

13  

Page 14: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Strand  cross-­‐correlaBon  analysis  

14  

Strand  cross-­‐correlaBon  is  computed  as  the  Pearson  correlaBon  between  the  posiBve  and  the  negaBve  strand  profiles  at  different  strand  shil  distances,  k  

Bailey,  et  al.  PracBcal  Guidelines  for  the  Comprehensive  Analysis  of  ChIP-­‐seq  Data,  PLOS  ComputaPonal  Biology  Nov  2013  

Page 15: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Strand  cross-­‐correlaBon  analysis  outputs  

15  

Page 16: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  Steps  4:    Quality  control  aler  read  mapping  

         Check  the  strand  cross-­‐correlaBon  peak  and  predominant  fragment  length.  

•  bsub  /nfs/BaRC_Public/phantompeakqualtools/run_spp.R                  -­‐c=Control_chr1.bam    -­‐savp                                                                                                          -­‐out=Control_chr1.run_spp.out  

•  bsub  /nfs/BaRC_Public/phantompeakqualtools/run_spp.R                  -­‐c=H3k4me3_chr1.bam    -­‐savp                                                                                                  -­‐out=H3k4me3_chr1.run_spp.out      -­‐savp,  save  cross-­‐correlaBon  plot  

16  

Page 17: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Peak calling

           i)    Read  extension  and  signal  profile  generaBon  §  strand  cross-­‐correlaBon  can  be  used  to  

calculate  fragment  length              ii)  Peak  evaluaBon  

§  Look  for  fold  enrichment  of  the  sample  over  input  or  expected  background  

§  EsBmate  the  significance  of  the  fold  enrichment  using:  •  Poisson  distribuBon  •  negaBve  binomial  distribuBon    •  background  distribuBon  from  input  

DNA  •  model  background  data  to  adjust  for  

local  variaBon  (MACS)    

17  

Pepke,  S.  et  al.  ComputaBon  for  ChIP-­‐seq  and  RNA-­‐seq  studies,    Nat  Methods.  Nov.  2009  

Page 18: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Peak  calling:  MACS  •  MACS  uses  a  two-­‐step  strategy:  

1.  Builds  a  model  using  high  quality  peaks  and  infers  shil  size  from  it.  2.  Shils  the  reads  and  does  a  second  round  to  call  the  final  peaks.  

•  It  uses  a  Poisson  distribuBon  to  assign  p-­‐values  to  peaks.  But  the  distribuBon  has  a  dynamic  parameter,  local  lambda,  to  capture  the  influence  of  local  biases.  

•  MACS  default  is  to  filter  out  redundant  tags  at  the  same  locaBon  and  with  the  same  strand  by  allowing  at  most  1  tag.  This  works  well.  

•  -­‐g:    You  need  to  set  up  this  parameter  accordingly:    EffecBve  genome  size.  It  can  be  1.0e+9  or  1000000000,  or  shortcuts:  'hs'  for  human  (2.7e9),  'mm'  for  mouse  (1.87e9),  'ce'  for  C.  elegans  (9e7)  and  'dm'  for  fruit  fly  (1.2e8),  Default:hs  

•  For  broad  peaks  like  some  histone  modificaBons  it  is  recommended  to  use  --nomodel and  if  there  is  not  input  sample  to  use  --nolambda.  

18  

Page 19: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  Steps  5:  MACS  •  Input  files:                    Hepg2H3k4me3_chr1.bam                    Control_chr1.bam  •  MACS  command      bsub    macs2    callpeak    -­‐t  H3k4me3_chr1.bam  -­‐c    Control_chr1.bam  -­‐-­‐name  H3k4me3_chr1          

-­‐-­‐format  BAM    

 PARAMETERS  •  -­‐t  TFILE  Treatment  file  •  -­‐c  CFILE  Control  file  •  -­‐-­‐name  NAME  Experiment  name,  which  will  be  used  to  generate  output  file  names.  DEFAULT:  

“NA”  •  -­‐-­‐format  FORMAT  Format  of  tag  file,  “BED”  or  “SAM”  or  “BAM”  or  “BOWTIE”.  DEFAULT:  

“BED”  •   -­‐-­‐extsize  EXTSIZE          The  arbitrary  extension  size  in  bp.  When  nomodel  is                      true,  MACS  will  use  this  value  as  fragment  size  to  extend  each  read  towards  3'  end,  then              ,                  pile  them  up.  You  can  use  the  value  from  the  strand  cross-­‐correla3on  analysis.  

19  

Page 20: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

MACS  output  Output  files:  

1.  Excel  peaks  file  contains  the  following  columns  Chr, start, end, length, abs_summit, pileup, -LOG10(pvalue), -LOG10(qvalue), name

2.  Bed  peaks  file       chr, start, end, -LOG10(qvalue)

3.  Summits.bed:  contains  the  peak  summits  locaBons  for  every  peaks.  The  5th  column  in  this  file  is  -­‐log10qvalue  the  same  as  NAME_peaks.bed  

4.  Peaks.narrowPeak  is  BED6+4  format  file.  Contains  the  peak  locaBons  together  with  peak  summit,  fold-­‐change,  pvalue  and  qvalue.    

5.  Model.r  is  an  R  script  which  you  can  use  to  produce  a  PDF  image  about  the  model  based  on  your  data.  (Rscript  NAME_model.r)  

 To  look  at  the  peaks  on  a  genome  browser  you  can  upload  one  of  the  output  bed  

files  or  you  can  also  make  a  bedgraph  file  with  columns  (step  6  of  hands  on):   chr, start, end, fold_enrichment

       

20  

Page 21: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Visualize  peaks  in  IGV  

21  

Hepg2H3k4me3_chr1.bedgraph  

Hepg2H3k4me3_chr1.sorted.bam  Coverage  

Hepg2H3k4me3_chr1.sorted.bam  

Control_chr1.sorted.bam  

Control_chr1.sorted.bam  Cov  

Page 22: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Other  recommendaBons  

•  Look  at  your  mapped  reads  and  peaks  in  a  genome  browser  to  verify  peak  calling  thresholds  

•  OpBonal:  remove  reads  mapping  to  the  ENCODE  and  1000  Genomes  blacklisted  regions  hGps://sites.google.com/site/anshulkundaje/projects/blacklists  

22  

Page 23: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Linking  peaks  to  genes:  Bed  tools  

23  

intersectBed  

closestBed  

slopBed  

coverageBed  

groupBy  It  groups  rows  based  on  the  value  of  a  given  column/s  and  it  summarizes  the  other  columns  

Page 24: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  8:  Link  peaks  to  nearby  genes  

•  Take  all  genes  and  add  3Kb  up  and  down  with  slopBed  slopBed  -­‐b  3000  -­‐i  GRCh37.p13.HumanENSEMBLgenes.bed  -­‐g  /nfs/

genomes/human_gp_feb_09_no_random/anno/chromInfo.txt  >  HumanGenesPlusMinus3kb.bed  

•  Intersect  the  slopped  genes  with  peaks  and  get  the  list  of  unique  genes  overlapping  intersectBed  -­‐wa    -­‐a  HumanGenesPlusMinus3kb.bed    -­‐b  peaks.bed  |  awk  '{print  $4}'  |  sort  -­‐u  >  Genesat3KborlessfromPeaks.txt  

 intersectBed  -­‐wa    -­‐a  HumanGenesPlusMinus3kb.bed    -­‐b  peaks.bed  |  head  -­‐3  chr1        45956538                45968751                ENSG00000236624_CCDC163P  chr1        45956538                45968751                ENSG00000236624_CCDC163P  chr1        51522509                51528577                ENSG00000265538_MIR4421  

 24  

Page 25: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

closestBed  -­‐d  -­‐a    peaks.bed  -­‐b  GRCh37.p13.HumanENSEMBLgenes.bed  |head  chr1 20870 21204 H3k4me3_chr1_peak_1 5.77592 chr1 14363 29806 ENSG00000227232_WASH7P 0

chr1 28482 30214 H3k4me3_chr1_peak_2 374.48264 chr1 29554 31109 ENSG00000243485_MIR1302-10 0

chr1 28482 30214 H3k4me3_chr1_peak_2 374.48264 chr1 14363 29806 ENSG00000227232_WASH7P 0

#the next two steps can also be done on excel

closestBed  -­‐d  -­‐a    peaks.bed  -­‐b  GRCh37.p13.HumanENSEMBLgenes.bed  |  groupBy  -­‐g  9,10    -­‐c  6,7,8,  -­‐o  disBnct,disBnct,disBnct  |  head  -­‐3    

ENSG00000227232_WASH7P 0 chr1 14363 29806 ENSG00000243485_MIR1302-10 0 chr1 29554 31109

ENSG00000227232_WASH7P 0 chr1 14363 29806

closestBed  -­‐d  -­‐a    peaks.bed  -­‐b  GRCh37.p13.HumanENSEMBLgenes.bed  |  groupBy  -­‐g  9,10    -­‐c  6,7,8,  -­‐o  disBnct,disBnct,disBnct  |  awk    'BEGIN  {OFS="\t"}{  if  ($2<3000)    {print  $3,$4,$5,$1,$2}  }  '  |  head  -­‐5

chr1 14363 29806 ENSG00000227232_WASH7P 0 chr1 29554 31109 ENSG00000243485_MIR1302-10 0 chr1 14363 29806 ENSG00000227232_WASH7P 0

chr1 134901 139379 ENSG00000237683_AL627309.1 0 chr1 135141 135895 ENSG00000268903_RP11-34P13.15 0

 

25  

Hands-­‐on  9:  Link  peaks  to  closest  genes    For  each  region  find  the  closest  gene  and  filter  based  on  the  distance  to  the  gene  

Page 26: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Hands-­‐on  9:  Link  peaks  to  closest  genes  (1  command)  For  each  region  find  the  closest  gene  and  filter  based  on  the  distance  to  the  gene  

 closestBed  -­‐d  -­‐a    peaks.bed  -­‐b  GRCh37.p13.HumanENSEMBLgenes.bed  |  groupBy  -­‐g  9,10    -­‐c  6,7,8,  -­‐o  disBnct,disBnct,disBnct  |  awk    'BEGIN  {OFS="\t"}{  if  ($2<3000)    {print  $3,$4,$5,$1,$2}  }'    >  closestGeneAt3KborLess.bed    closestBed    -­‐d  print  the  distance  to  the  feature  in  -­‐b    groupBy    -­‐g  columns  to  group  on      -­‐c  columns  to  summarize    -­‐o  operaBon  to  use  to  summarize  

26  

Page 27: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

Visualizing  ChIP-­‐seq  reads  with  ngsplot  See  Hot  Topics:  ngsplot  

•  Hands-­‐on  10:  bsub  ngs.plot.r  -­‐G  hg19    -­‐R  tss  -­‐C  H3k4me3_chr1.bam    -­‐O  H3k4me3_chr1.tss  -­‐T  H3K4me3  -­‐L  3000  -­‐FL  300  

27  

Page 28: ChIP%seq)Analysis)barc.wi.mit.edu/education/hot_topics/ChIPseq_2015/... · Experimental)design) • Include)acontrol)sample.) • If)the)protein)of)interestbinds)repeBBve)regions,)using)

References  §  Previous  Hot  Topics  

Quality  Control  and  Mapping  Reads  hGp://jura.wi.mit.edu/bio/educaBon/hot_topics/NGS_QC_mapping_Feb2015/NGS_QC_Mapping2015_1perPage.pdf  

§  SOPs  hGp://barcwiki.wi.mit.edu/wiki/SOPs/chip_seq_peaks  

§  Reviews  and  benchmark  papers:  ChIP-­‐seq:  advantages  and  challenges  of  a  maturing  technology  (Oct  09)  (hGp://www.nature.com/nrg/journal/v10/n10/full/

nrg2641.html)    ComputaBon  for  ChIP-­‐seq  and  RNA-­‐seq  studies  (Nov  09)  (hGp://www.nature.com/nmeth/journal/v6/n11s/full/nmeth.

1371.html)  PracBcal  Guidelines  for  the  Comprehensive  Analysis  of  ChIP-­‐seq  Data.  PLoS  Comput.  Biol.  2013  A  computaBonal  pipeline  for  comparaBve  ChIP-­‐seq  analyses.  Nat.  Protoc.  2011  ChIP-­‐seq  guidelines  and  pracBces  of  the  ENCODE  and  modENCODE  consorBa.  Genome  Res.  2012.    

§  Quality  control  and  strand  cross-­‐correlaBon  hGp://code.google.com/p/phantompeakqualtools/    

§  MACS:    Model-­‐based  Analysis  of  ChIP-­‐Seq  (MACS).  Genome  Biol  2008  hGp://liulab.dfci.harvard.edu/MACS/index.html  

             Using  MACS  to  idenBfy  peaks  from  ChIP-­‐Seq  data.  Curr  Protoc  BioinformaPcs.  2011                hGp://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0214s34/pdf  §  Bedtools:  

 hGps://code.google.com/p/bedtools/        hGp://bioinformaBcs.oxfordjournals.org/content/26/6/841.abstract  §  ngsplot  

 hGps://code.google.com/p/ngsplot/        Shen,  L.*,  Shao,  N.,  Liu,  X.  and  Nestler,  E.  (2014)  ngs.plot:  Quick  mining  and  visualizaBon  of  next-­‐generaBon  sequencing  data  by  integraBng  genomic  databases,  BMC  Genomics,  15,  284.   28