29
129 APPENDIX 1 INDIAN UTILITY NETWORK (230kV & 400kV) The details of 36 Bus Indian Utility Network supplying power to the Chennai metro city in the State of Tamil Nadu is given below. The actual system consists of 230 kV lines with Kundah conductor as well as Zebra conductor. Since the parameters are almost identical for both the Kundah and Zebra conductors, 230kV zebra conductors are considered for study. For 400 kV lines with twin moose and quad moose conductors are taken as per the actual system. Table A1.1 Bus No, name and voltage level of Indian Utility Network Bus No Bus Name Bus voltage in kV 1 NELLORE400 400 2 ETPS 230 3 NCTPS 230 4 SRIPERUMBUDUR 230 5 SUNGUVARCHATRAM 230 6 KALIVANTHAPATTU 230 7 S. MAMBAKKAM 230 8 NOKIA 230 9 KADAPERI 230 10 KORATTUR 230 11 KOYAMBEDU 230

Chennei Network

Embed Size (px)

DESCRIPTION

Chennei Network

Citation preview

  • 129

    APPENDIX 1

    INDIAN UTILITY NETWORK (230kV & 400kV)

    The details of 36 Bus Indian Utility Network supplying power to

    the Chennai metro city in the State of Tamil Nadu is given below. The actual

    system consists of 230 kV lines with Kundah conductor as well as Zebra

    conductor. Since the parameters are almost identical for both the Kundah and

    Zebra conductors, 230kV zebra conductors are considered for study. For 400

    kV lines with twin moose and quad moose conductors are taken as per the

    actual system.

    Table A1.1 Bus No, name and voltage level of Indian Utility Network

    Bus No Bus Name Bus voltage in kV 1 NELLORE400 4002 ETPS 2303 NCTPS 2304 SRIPERUMBUDUR 2305 SUNGUVARCHATRAM 2306 KALIVANTHAPATTU 2307 S. MAMBAKKAM 2308 NOKIA 2309 KADAPERI 230

    10 KORATTUR 23011 KOYAMBEDU 230

  • 130

    Table A1.1 (Continued)

    Bus No Bus Name Bus voltage in kV 12 TARAMANI 23013 GUMMIDIPOONDI 23014 MANALI 23015 BASINBRIDGE 23016 KILPAUK 23017 TONDIARPET 23018 MYLAPORE 23019 VEERAPURAM 23020 SPKOIL 23021 SIRUSERI 23022 SHOLINGANALLUR 23023 MOSUR 23024 ORAGADAM 23025 ARANI 23026 KALPAKKAM 23027 VYASARPADI# 23028 ALAMATHI 23029 ALAMATHI400 40030 SRIPERUBUDUR400 40031 CHITHOOR400 40032 KALIVANTHAPATTU400 40033 SUNGUVARCHATRAM400 40034 NLCTS400 40035 KOLAR400 40036 VALLUR400# 400

    Note : # are considered in Case 2

  • 131

    Table A1.2 Transmission line data of Indian Utility Network

    Line No

    From Bus To Bus R

    (p.u) X

    (p.u) B/2

    (p.u) 1 ALAMATHI MANALI 0.00356 0.01897 0.01633

    2 ALAMATHI MANALI 0.00356 0.01897 0.01633

    3 ALAMATHI MOSUR 0.00798 0.04256 0.03663

    4 ALAMATHI NCTPS 0.00548 0.02920 0.02513

    5 SRIPERUMBUDUR KORATTUR 0.00466 0..2483 0.02137

    6 KORATTUR MANALI 0.00300 0.01600 0.01377

    7 KORATTUR KOYAMBEDU 0.00266 0.01419 0.01221

    8 KORATTUR KILPAUK 0.00238 0.01270 0.01093

    9 SRIPERUMBUDUR KOYAMBEDU 0.00710 0.03786 0.03259

    10 SRIPERUMBUDUR TARAMANI 0.00540 0.02879 0.02478

    11 TARAMANI VEERAPURAM 0.00480 0.02557 0.02201

    12 TARAMANI SHOLINGANALLUR 0.00278 0.01485 0.01278

    13 NCTPS GUMMIDIPOONDI 0.00571 0.03044 0.02620

    14 SRIPERUMBUDUR GUMMIDIPOONDI 0.01035 0.05519 0.04749

    15 ETPS MANALI 0.00105 0.00561 0.00483

    16 MANALI TONDIARPET 0.00153 0.00817 0.00703

    17 #TONDIARPET BASINBRIDGE 0.00046 0.00024 0.00212

    18 BASINBRIDGE MYLAPORE 0.00161 0.00858 0.00738

    19 NCTPS KILPAUK 0.00583 0.03110 0.02676

    20 NCTPS TONDIARPET 0.00266 0.01419 0.01221

    21 NCTPS TONDIARPET 0.00266 0.01419 0.01221

    22 ETPS TONDIARPET 0.00128 0.00685 0.00589

    23 VEERAPURAM SPKOIL 0.00015 0.00082 0.00071

    24 ETPS NCTPS 0.00135 0.00718 0.00618

    25 KALIVANTHAPATTU SPKOIL 0.00388 0.02070 0.01782

    26 SPKOIL ORAGADAM 0.00379 0.02021 0.01739

  • 132

    Table A1.2 (Continued)

    LineNo

    From Bus To Bus R

    (p.u) X

    (p.u) B/2

    (p.u) 27 KALPAKKAM SPKOIL 0.00473 0.02524 0.02172

    28 KALPAKKAM SPKOIL 0.00473 0.02524 0.02172

    29 KALIVANTHAPATTU SIRUSERI 0.00368 0.01963 0.01690

    30 SIRUSERI SHOLINGANALLUR 0.00232 0.01237 0.01065

    31 MOSUR NCTPS 0.01386 0.07391 0.06361

    32 SUNGUVARCHATRAM ARANI 0.00866 0.04619 0.03976

    33 ARANI KALPAKKAM 0.01609 0.08579 0.07383

    34 NCTPS SRIPERUMBUDUR 0.01132 0.06038 0.05197

    35 SRIPERUMBUDUR SUNGUVARCHATRAM 0.00928 0.04949 0.04260

    36 SRIPERUMBUDUR S. MAMBAKKAM 0.00077 0.00412 0.00355

    37 SRIPERUMBUDUR NOKIA 0.00091 0.00487 0.00419

    38 SRIPERUMBUDUR ORAGADAM 0.00316 0.01683 0.01448

    39 SRIPERUMBUDUR KADAPERI 0.00264 0.01359 0.01330

    40 SRIPERUMBUDUR KADAPERI 0.00264 0.01359 0.01330

    41 S. MAMBAKKAM NOKIA 0.00063 0.00338 0.00291

    42 NELLORE400 ALAMATHI400 0.00190 0.03251 0.67791

    43 NELLORE400 ALAMATHI400 0.00190 0.03251 0.67791

    44 #ALAMATHI400 SRIPERUMBUDUR400 0.00098 0.01009 0.21615

    45 #ALAMATHI400 SRIPERUMBUDUR400 0.00098 0.01009 0.21615

    46 CHITHOOR400 SRIPERUMBUDUR400 0.00120 0.01229 0.26326

    47 SRIPERUMBUDUR400 KALIVANTHAPATTU 0.00063 0.00647 0.13856

    48 SUNGUVARCHATRAM400 SRIPERUMBUDUR400 0.00015 0.00155 0.03325

    49 SUNGUVARCHATRAM400 NLCTS400 0.00170 0.01747 0.37411

    50 KOLAR400 KALIVANTHAPATTU 0.00252 0.02588 0.55424

    Note: Thermal capacity of 240 MW and 600 MW/1000MW are considered for 230 kV and 400kV twin /quad conductors respectively # will be modified in Case-2.

  • 133

    Table A1.3 Transformer data of Indian Utility Network

    From Bus To Bus Circuits R(P.U) X(P.U) Rating

    in MVASRIPERUMBUDUR400 SRIPERUMBUDUR230 3 0.00060 0.01202 945

    ALAMATHI400 ALAMATHI230 2 0.00090 0.01803 630

    SUNGUVARCHATRAM400 SUNGUVARCHATRAM230 2 0.00090 0.01803 630

    KALIVANTHAPATTU400 KALIVANTHAPATTU230 2 0.00090 0.01803 630

    Table A1.4 Load details of season -1

    Bus No Bus Name

    PEAK OFF PEAK P

    in MW Q

    in MVAR P

    in MW Q

    in MVAR

    4 SRIPERUMBUDUR 250 30 260 307 S. MAMBAKKAM 54 - 68 38 NOKIA 16 2 17 2-9 KADAPERI 156 44 125 42

    10 KORATTUR 140 - 125 -11 KOYAMBEDU 216 104 190 8412 TARAMANI 225 86 236 9513 GUMMIDIPOONDI 189 80 165 8014 MANALI 73 27 71 3215 BASINBRIDGE 42 12 39 516 KILPAUK 91 23 90 2417 TONDIARPET 113 3 117 618 MYLAPORE 124 71 132 7319 VEERAPURAM 77 24 80 3220 SPKOIL 145 - 142 -21 SIRUSERI 99 14 110 1723 MOSUR 176 86 170 4824 ORAGADAM 59 28 63 5225 ARANI 168 3 141 626 KALPAKKAM 180 - 180 -28 ALAMATHI 94 - 89 -

  • 134

    Table A1.5 Generation details of season -1

    Bus No

    Bus Name PEAK OFF PEAK

    P in MW Q in MVAR P in MW Q in MVAR

    1 NELLORE400 824 -94 944 -732 ETPS 208 91 204 793 NCTPS 390 100 390 100

    13 GUMMIDIPOONDI 220 87 220 7926 KALPAKKAM 147 123 146 12331 CHITHOOR400 184 107 180 10534 NLCTS400 480 124 321 11935 KOLAR400 279 35 250 35

    Table A1.6 Load details of season -2

    Bus No Bus Name

    PEAK OFF PEAK P in MW Q in MVAR P in MW Q in MVAR

    4 SRIPERUMBUDUR 260 30 250 347 S.MAMBAKKAM 39 -10 39 118 NOKIA 23 13 17 29 KADAPERI 150 34 144 24

    10 KORATTUR 175 - 165 -11 KOYAMBEDU 214 48 198 4212 TARAMANI 236 80 222 8513 GUMMIDIPOONDI 188 48 196 6414 MANALI 62 26 76 3315 BASINBRIDGE 50 23 41 1816 KILPAUK 110 37 99 2517 TONDIARPET 154 69 127 6918 MYLAPORE 114 44 110 4019 VEERAPURAM 69 25 64 3020 SPKOIL 126 - 114 -21 SIRUSERI 97 16 99 1822 SHOLINGANALLUR 39 20 24 923 MOSUR 109 34 110 3724 ORAGADAM 58 14 60 1625 ARANI 121 2 94 126 KALPAKKAM 180 - 180 -28 ALAMATHI 83 - 78 -

  • 135

    Table A1.7 Generation details of season -2

    Bus No

    Bus Name PEAK OFF PEAK

    P in MW Q in MVAR P in MW Q in MVAR

    1 NELLORE400 1266 100 1286 502 ETPS 90 523 NCTPS 390 66 300 69

    13 GUMMIDIPOONDI 40 25 40 3026 KALPAKKAM 166 117 165 11131 CHITHOOR400 160 118 142 11034 NLCTS400 405 136 390 13235 KOLAR400 200 45 200 44

    Table A1.8 Load details of season -3

    Bus No Bus Name

    PEAK OFF PEAK P in MW Q in MVAR P in MW Q in MVAR

    4 SRIPERUMBUDUR 284 30 250 447 S.MAMBAKKAM 29 2 30 58 NOKIA 23 12 17 49 KADAPERI 148 30 125 2010 KORATTUR 153 8 152 -11 KOYAMBEDU 197 69 167 4812 TARAMANI 226 85 193 7313 GUMMIDIPOONDI 158 26 155 2814 MANALI 72 32 63 2015 BASINBRIDGE 48 20 40 2216 KILPAUK 72 36 67 3817 TONDIARPET 143 28 120 2818 MYLAPORE 131 44 94 4419 VEERAPURAM 57 41 57 3620 SPKOIL 145 - 133 -21 SIRUSERI 116 17 102 1522 SHOLINGANALLUR 42 24 28 1023 MOSUR 127 70 87 5024 ORAGADAM 56 4 45 425 ARANI 133 - 115 -26 KALPAKKAM 180 - 180 -28 ALAMATHI 83 - 70 --

  • 136

    Table A1.9 Generation details of season -3

    Bus No Bus Name

    PEAK OFF PEAKP in MW Q in MVAR P in MW Q in MVAR

    1 NELLORE400 815 -106 558 -1732 ETPS 200 78 200 473 NCTPS 600 65 530 50

    13 GUMMIDIPOONDI 190 51 190 3326 KALPAKKAM 60 50 60 5031 CHITHOOR400 150 100 130 7634 NLCTS400 405 113 405 8035 KOLAR400 250 35 250 15

    Table A1.10 Load details of season -4

    Bus No Bus Name

    PEAK OFF PEAK P in MW Q in MVAR P in MW Q in MVAR

    4 SRIPERUMBUDUR 211 20 195 307 S.MAMBAKKAM 41 3 38 28 NOKIA 16 2 16 29 KADAPERI 164 26 132 1810 KORATTUR 124 - 127 -11 KOYAMBEDU 184 84 141 4212 TARAMANI 224 63 179 7313 GUMMIDIPOONDI 132 36 116 3414 MANALI 69 16 42 2015 BASINBRIDGE 41 11 29 1516 KILPAUK 82 7 87 1217 TONDIARPET 130 18 107 1818 MYLAPORE 114 60 109 5619 VEERAPURAM 68 41 61 4120 SPKOIL 161 - 122 -21 SIRUSERI 118 20 101 1922 SHOLINGANALLUR 52 24 34 1123 MOSUR 169 90 136 8024 ORAGADAM 59 9 52 1525 ARANI 188 - 119 -26 KALPAKKAM 180 - 180 -28 ALAMATHI 98 - 86 --

  • 137

    Table A1.11 Generation details of season -4

    Bus No Bus Name

    PEAK OFF PEAKP in MW Q in MVAR P in MW Q in MVAR

    1 NELLORE400 704 -130 362 -1932 ETPS 150 70 150 433 NCTPS 580 57 585 50

    13 GUMMIDIPOONDI 180 48 120 3226 KALPAKKAM 113 100 113 8431 CHITHOOR400 180 48 150 7034 NLCTS400 569 90 569 5535 KOLAR400 190 34 190 15

    Table A1.12 Load details of season -5

    Bus No Bus Name

    PEAK OFF PEAK P in MW Q in MVAR P in MW Q in MVAR

    4 SRIPERUMBUDUR 260 34 271 307 S.MAMBAKKAM 63 2 64 48 NOKIA 17 2 16 29 KADAPERI 166 40 149 40

    10 KORATTUR 130 - 115 -11 KOYAMBEDU 213 63 226 6012 TARAMANI 232 84 220 8613 GUMMIDIPOONDI 175 68 159 6814 MANALI 69 16 46 1415 BASINBRIDGE 31 28 23 3716 KILPAUK 174 7 136 1017 TONDIARPET 120 6 106 618 MYLAPORE 151 81 141 8019 VEERAPURAM 78 38 83 -20 SPKOIL 146 - 114 -21 SIRUSERI 111 19 106 1922 SHOLINGANALLUR 59 30 53 2223 MOSUR 164 60 157 4024 ORAGADAM 70 28 65 2825 ARANI 176 - 141 -26 KALPAKKAM 180 - 180 -28 ALAMATHI 85 - 77 --

  • 138

    Table A1.13 Generation details of season -5

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 867 -80 716 -127

    2 ETPS 180 90 180 72

    3 NCTPS 585 68 585 60

    13 GUMMIDIPOONDI 220 80 150 72

    26 KALPAKKAM 113 100 113 100

    31 CHITHOOR400 200 115 190 97

    34 NLCTS400 569 115 570 115

    35 KOLAR400 190 47 190 35

    Table A1.14 Generation mix details for GM schedule-1

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 493 150 -181 -171

    2 ETPS 410 84 410 52

    3 NCTPS 585 63 585 49

    13 GUMMIDIPOONDI 260 75 260 32

    26 KALPAKKAM 150 105 150 90

    31 CHITHOOR400 200 102 200 75

    34 NLCTS400 570 122 570 85

    35 KOLAR400 250 36 250 15

  • 139

    Table A1.15 Generation mix details for GM schedule-2

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 415 -155 -258 -162

    2 ETPS 410 83 410 48

    3 NCTPS 585 -64 585 -46

    13 GUMMIDIPOONDI 36 30 260 26

    26 KALPAKKAM 250 124 250 78

    31 CHITHOOR400 400 109 400 79

    34 NLCTS400 570 123 570 82

    35 KOLAR400 250 36 250 14

    Table A1.16 Generation mix details for GM schedule-3

    Bus No

    Bus Name PEAK OFF PEAK

    Pin MW

    Qin MVAR

    Pin MW

    Qin MVAR

    1 NELLORE400 782 -94 98 -193

    2 ETPS 200 92 200 45

    3 NCTPS 2010 70 210 -48

    13 GUMMIDIPOONDI 260 80 260 26

    26 KALPAKKAM 250 131 250 78

    31 CHITHOOR400 400 122 400 79

    34 NLCTS400 569 116 570 82

    35 KOLAR400 250 44 250 14

  • 140

    Table A1.17 Generation mix details For GM schedule-4

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 722 -110 565 -150

    2 ETPS 90 60 90 74

    3 NCTPS 390 64 390 35

    13 GUMMIDIPOONDI 40 35 40 35

    26 KALPAKKAM 166 112 166 52

    31 CHITHOOR400 160 110 160 94

    34 NLCTS400 WITH WIND 942 107 945 149

    35 KOLAR400 200 41 200 28

    Table A1.18 Generation mix details for GM schedule-5

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 48 -170 -105 -168

    2 ETPS 402 75 402 66

    3 NCTPS 570 58 570 25

    13 GUMMIDIPOONDI 40 35 40 35

    26 KALPAKKAM 250 97 250 44

    31 CHITHOOR400 200 95 200 86

    34 NLCTS400 WITH WIND 945 150 945 138

    35 KOLAR400 250 28 250 20

  • 141

    Table A1.19 Generation mix details for GM schedule-6

    Bus

    NoBus Name

    PEAK OFF PEAKP

    in MW Q

    in MVARP

    in MWQ

    in MVAR1 NELLORE400 551 -142 395 -170

    2 ETPS 200 81 200 68

    3 NCTPS 195 61 195 31

    13 GUMMIDIPOONDI 250 61 250 61

    26 KALPAKKAM 160 108 160 55

    31 CHITHOOR400 200 102 200 90

    34 NLCTS400 WITH WIND 900 155 900 137

    35 KOLAR400 250 33 250 24

    Table A1.20 Details of capacity addition in generation and transmission

    From Bus To Bus R(p.u)

    X(p.u)

    B/2 (p.u)

    1TONDIARPET VYASARPADI 0.00039 0.00206 0.001771VYASARPADI BASINBRIDGE 0.00023 0.00124 0.001062ALAMATHI400 VALLUR400 0.00094 0.00970 0.207842ALAMATHI400 VALLUR400 0.00094 0.00970 0.207842VALLUR400 SRIPERUMBUDUR400 0.00069 0.00712 0.152422VALLUR400 SRIPERUMBUDUR400 0.00069 0.00712 0.152423SUNGUVARCHATRAM S.MAMBAKKAM 0.00093 0.00495 0.004263SUNGUVARCHATRAM ORAGADAM 0.00232 0.01237 0.010653SUNGUVARCHATRAM NOKIA 0.00139 0.00742 0.006391 Tondiarpet Basinbridge made LILO at Vyasarpadi in Case 2 1 New Substation at Vyasarpadi(30MW-50MW) in Case 22 Alamathi Sriperumbudur made LILO at Vallur in Case 2 2 Vallur New Generation 1000 MW in Case 23 Additional lines from Sunguvarchatram in Case 2

  • 142

    APPENDIX 2

    IEEE 6 BUS SYSTEM

    Table A2.1 Bus data of IEEE 6 bus system

    Bus No Type

    V(p.u)

    ThetaPGi

    MWQGi

    MVARPLi

    MWQLi

    MVARQmin

    MVARQmax MVAR

    1 Slack 1.05 0 0 0 0 0 0 02 PV 1.05 0 50 0 0 0 -50 100 3 PV 1.07 0 60 0 0 0 -50 150 4 PQ 1.0 0 0 0 70 70 0 05 PQ 1.0 0 0 0 70 70 0 06 PQ 1.0 0 0 0 70 70 0 0

    Table A2.2 Line data of IEEE 6 bus system

    Sl.No FromBus To BusR

    (p.u) X

    (p.u) B/2

    (p.u) Xmer

    tapThermal

    limit(MW) 1. 1 2 0.10 0.20 0.02 1 302. 1 4 0.05 0.20 0.02 1 503. 1 5 0.08 0.30 0.03 1 404. 2 3 0.05 0.25 0.03 1 205. 2 4 0.05 0.10 0.01 1 406. 2 5 0.10 0.30 0.02 1 207. 2 6 0.07 0.20 0.025 1 308. 3 5 0.12 0.26 0.025 1 209. 3 6 0.02 0.10 0.01 1 6010. 4 5 0.20 0.40 0.04 1 2011. 5 6 0.10 0.30 0.00 1 20

  • 143

    APPENDIX 3

    IEEE 30 BUS SYSTEM

    Table A3.1 Bus data of IEEE 30 bus system

    Bus PG

    MWQG

    MVARPL

    MWQL

    MVAR1 0 0 0 02 57.56 2.47 21.7 12.73 0.0 0.0 2.4 1.24 0.0 0.0 7.6 1.65 24.56 22.57 94.2 19.06 0.0 0.0 0.0 0.07 0.0 0.0 22.8 10.98 35.0 34.84 30.0 30.09 0.0 0.0 0.0 0.010 0. 0.0 5.8 2.011 17.93 30.78 0.0 0.012 0.0 0.0 11.2 7.513 16.91 37.83 0.0 0.014 0.0 0.0 6.2 1.615 0.0 0.0 8.2 2.516 0.0 0.0 3.5 1.817 0.0 0.0 9.0 5.818 0.0 0.0 3.2 0.919 0.0 0.0 9.5 3.420 0.0 0.0 2.2 0.721 0.0 0.0 17.5 11.2

  • 144

    Table A3.1 (Continued)

    Bus PGMWQG

    MVARPL

    MWQL

    MVAR

    22 0.0 0.0 0.0 0.023 0.0 0.0 3.2 1.624 0.0 0.0 8.7 6.725 0.0 0.0 0.0 0.026 0.0 0.0 3.5 2.327 0..0 0..0 0.0 0.028 0.0 0.0 0.0 0.029 0.0 0.0 2.4 0.930 0.0 0.0 10.6 1.9

    Table A3.2 Transformer data of IEEE 30 bus system

    Transformer No Between buses Tap settings 1 6-9 1.0155

    2 6-10 0.9629

    3 4-12 1.0129

    4 28-27 0.9581

    Table A3.3 Shunt Capacitor data of IEEE 30 bus system

    Bus No Susceptance (p.u)

    10 0.19

    24 0.04

  • 145

    Table A3.4 Line data of IEEE 30 bus system

    FromBus

    ToBus

    R(p.u)

    X(p.u)

    B/2(p.u)

    Thermal Limit (MW)

    1 2 0.0192 0.0575 0.0264 104

    1 3 0.0452 0.1852 0.0264 104

    2 4 0.0570 0.1737 0.0184 52

    3 4 0.0132 0.0379 0.0042 104

    2 5 0.0472 0.1983 0.0209 104

    2 6 0.0581 0.1763 0.0187 52

    4 6 0.0119 0.0414 0.0045 72

    5 7 0.0460 0.1160 0.0102 56

    6 7 0.0267 0.0820 0.0085 104

    6 8 0.0120 0.0420 0.0045 25.6

    6 9 0.0 0.2080 0.0 52

    6 10 0.0 0.5560 0.0 25.6

    9 11 0.0 0.2080 0.0 52

    9 10 0.0 0.1100 0.0 52

    4 12 0.0 0.2560 0.0 52

    12 13 0.0 0.1400 0.0 52

    12 14 0.1231 0.2559 0.0 25.6

    12 15 0.0662 0.1304 0.0 25.6

    12 16 0.0945 0.1987 0.0 12.8

    14 15 0.2210 0.1997 0.0 12.8

    16 17 0.0824 0.1932 0.0 12.8

    15 18 0.1070 0.2185 0.0 12.8

  • 146

    Table A3.4 (Continued)

    FromBus

    ToBus

    R(p.u)

    X(p.u)

    B/2(p.u)

    ThermalLimit (MW)

    18 19 0.0639 0.1292 0.0 12.819 20 0.0340 0.0680 0.0 12.810 20 0.0936 0.2090 0.0 25.610 17 0.0324 0.0845 0.0 25.610 21 0.0348 0.0749 0.0 25.610 22 0.0727 0.1499 0.0 25.621 22 0.0116 0.0236 0.0 25.615 23 0.1000 0.2020 0.0 12.822 24 0.1150 0.1790 0.0 12.823 24 0.1320 0.2700 0.0 12.824 25 0.1885 0.3292 0.0 12.825 26 0.2554 0.3800 0.0 12.825 27 0.1093 0.2087 0.0 12.828 27 0.0 0.3960 0.0 5227 29 0.2198 0.4153 0.0 12.827 30 0.3202 0.6027 0.0 12.829 30 0.2399 0.4533 0.0 20.88 28 0.0636 0.2000 0.0214 25.66 28 0.0169 0.0599 0.0065 25.6

    Table A3.5 Regulated bus data of IEEE 30 bus system

    Bus No Voltage (p.u) Reactive power limits

    Minimum MVAR Maximum MVAR2 1.0338 -20 60

    5 1.0058 -15 62.5

    8 1.0230 -15 50

    11 1.0913 -10 40

    13 1.0883 -15 45

  • 147

    APPENDIX 4

    INDIAN UTILITY NETWORK (230kV)

    The 36 bus Chennai city network considered for the sensitivity

    index study stated in the Appendix 1 is dominant of 230 kV level and the

    most of the contingencies have occurred in these lines. Hence, the network is

    reduced to 230 kV level for testing of CSI ranking and CSI and OVI based

    ranking. Since the line parameters of Zebra and Kundah conductor are almost

    identical, and the practical system has mixed conductors, only the parameters

    of Kundah conductor are considered for test purposes.

    Table A4.1 Bus No, Name and voltage level of Indian Utility Network

    Bus No Bus Name Bus voltage in kV

    1 ALAMATHI 230

    2 ETPS 230

    3 NCTPS 230

    4 SRIPERUMBUDUR 230

    5 SUNGUVARCHATRAM 230

    6 KALIVANTHAPATTU 230

    7 S. MAMBAKKAM 230

    8 NOKIA 230

    9 KADAPERI 230

    10 KORATTUR 230

  • 148

    Table A4.1 (Continued)

    Bus No Bus Name Bus voltage in kV

    11 KOYAMBEDU 230

    12 TARAMANI 230

    13 GUMMIDIPOONDI 230

    14 MANALI 230

    15 BASINBRIDGE 230

    16 KILPAUK 230

    17 TONDIARPET 230

    18 MYLAPORE 230

    19 VEERAPURAM 230

    20 SPKOIL 230

    21 SIRUSERI 230

    22 SHOLINGANALLUR 230

    23 MOSUR 230

    24 ORAGADAM 230

    25 ARANI 230

    26 KALPAKKAM 230

  • 149

    Table A4.2 Bus data of Indian Utility Network

    Bus Type PGiMW

    QGiMVAR

    PLiMW

    QLiMVAR

    Qmin MVAR

    Qmax MVAR

    1 Slack 0 0 130 78 0 02 PV 405 0 0 0 -125 125 3 PV 567 0 0 0 -150 150 4 PV 600 0 285 171 -100 100 5 PV 500 0 130 78 -125 125 6 PV 500 0 0 0 -125 125 7 PQ 0 0 65 39 0 08 PQ 0 0 65 39 0 09 PQ 0 0 195 117 0 010 PQ 0 0 195 117 0 011 PQ 0 60 195 117 0 012 PQ 0 40 195 117 0 013 PQ 0 0 130 78 0 014 PQ 0 0 130 78 0 015 PQ 0 0 65 39 0 016 PQ 0 0 130 78 0 017 PQ 0 0 130 78 0 018 PQ 0 0 130 78 0 019 PQ 0 0 65 39 0 020 PQ 0 0 162.5 97.5 0 021 PQ 0 40 130 78 0 022 PQ 0 40 104 62.4 0 023 PQ 0 0 130 78 0 024 PQ 0 0 65 39 0 025 PQ 0 20 150 90 0 026 PV 280 0 120 72 -100 100

  • 150

    Table A4.3 Line data of Indian Utility Network

    FromBus

    To

    Bus

    R

    (p.u)

    X

    (p.u)

    B/2

    (p.u)

    Thermal

    Limit(MW)

    1 3 0.00507 0.0726 0 240

    2 3 0.00125 0.0064 0 240

    3 4 0.0105 0.054 0 240

    4 5 0.0086 0.0443 0 240

    4 7 0.00071 0.00369 0 240

    4 8 0.00084 0.00435 0 240

    4 9 0.00263 0.0135 0 240

    7 8 0.00058 0.003 0 240

    1 14 0.00329 0.0169 0 240

    1 14 0.00329 0.0169 0 240

    1 23 0.00739 0.038 0 240

    2 14 0.00097 0.005 0 260

    2 17 0.00118 0.0061 0 240

    3 13 0.00529 0.027 0 240

    3 16 0.0054 0.0278 0 240

    3 17 0.00246 0.0127 0 240

    3 17 0.00246 0.0127 0 240

    3 23 0.0128 0.0662 0 240

    4 10 0.00431 0.0222 0 240

    4 11 0.00658 0.0339 0 240

    4 12 0.005 0.025 0 240

    4 13 0.00959 0.049 0 240

  • 151

    Table A4.3 (Continued)

    FromBus

    ToBus

    R(p.u)

    X(p.u)

    B/2(p.u)

    Thermal Limit(MW)

    4 24 0.0029 0.015 0 240

    4 30 0.00131 0.0067 0 240

    5 25 0.008 0.041 0 240

    6 20 0.00359 0.0185 0 264

    6 21 0.0034 0.0175 0 240

    9 30 0.00131 0.0067 0 240

    10 11 0.00246 0.0127 0 240

    10 14 0.00278 0.0143 0 240

    10 16 0.0022 0.0114 0 240

    12 19 0.0044 0.0229 0 240

    14 17 0.00142 0.0073 0 240

    15 17 0.00043 0.0022 0 240

    15 18 0.00149 0.0077 0 240

    19 20 0.00014 0.00073 0 240

    20 24 0.0035 0.018 0 240

    20 26 0.00438 0.023 0 240

    20 26 0.00438 0.023 0 240

    21 22 0.00215 0.011 0 240

    25 26 0.0149 0.0768 0 240

  • 152

    Table A4.4 Critical Line Contingencies of Indian Utility Network

    Contingency From Bus To Bus

    1 2 172 2 33 2 144 3 175 3 166 3 137 4 248 1 149 5 4

  • 153

    APPENDIX 5

    FACTS CONTROLLERS

    THYRISTOR CONTROLLED SERIED COMPENSATOR (TCSC)

    TCSC configuration comprises of controlled reactors in parallel

    with fixed capacitor bank. This combination allows smooth control of the

    fundamental frequency capacitive reactance over a wide range. The typical

    configuration of TCSC is shown in Figure A5.1.

    Figure A5.1 Schematic diagram of TCSC

    TCSC introduce a number of important benefits in the application

    of series compensation:

    Elimination of subsynchronous resonance risks

    Damping of active power oscillations

    Post contingency stability improvement

    Dynamic power flow control

    The overall result typically appears as increased transfer capacity.

    In interconnected power systems, the actual transfer of power from one region

    to another might take unintended routes depending on impedances of

    transmission lines connecting the areas. TCSC is a useful means for

  • 154

    optimizing power flow between regions for varying loading and network

    configurations.

    An important benefit of TCSC is its ability for quick boosting of its

    degree of compensation, making it very useful as a tool for improving the

    post-contingency behaviour of networks. By means of this quality of the

    TCSC, the degree of compensation of a series capacitor can be increased

    temporarily following upon a network contingency, thereby adding to the

    dynamic stability of the network (voltage and angular) precisely when it is

    needed.

    STATIC VAR COMPENSATOR (SVC)

    The SVC typically consists of a Thyristor Controlled Reactor

    (TCR), a Thyristor Switched Capacitor and a Fixed Capacitor (FC). Installing

    an SVC at one or more suitable points in the network can increase transfer

    capability and reduce losses while maintaining a smooth voltage profile under

    different network conditions.

    Below are the benefits of SVC to power transmission,

    Stabilized voltage in weak systems

    Reduced transmission losses

    Increased transmission capacity, to reduce, defer or eliminate the need

    for new lines

    Higher transient stability limit

    Increased damping of minor disturbances

    Power oscillation damping

    Stabilized voltage at the receiving end of long lines

  • 155

    SVC is the preferred tool for dynamic reactive power support in

    high voltage transmission grids. The SVC will ensure that the system voltage

    does not sag even under heavily loaded condition. The configuration of SVC

    is shown in Figure A5.2.

    Figure A5.2 Schematic diagram of SVC

    UNIFIED POWER FLOW CONTROLLER (UPFC)

    The UPFC is able to control, simultaneously or selectively, all the

    parameters affecting power flow in the transmission line (i.e., voltage,

    impedance and phase angle), and this unique capability is signified by naming

    it a unified. Alternatively, it can independently control both the real and

    reactive power flow in the line. Simplified diagram of UPFC is shown in

    Figure A5.3.

    Figure A5.3 Schematic diagram of UPFC

  • 156

    From the diagram the converter 2 performs the main function of

    the UPFC by injecting via a series transformer, an AC voltage with

    controllable magnitude and phase angle in series with the transmission line.

    The basic function of converter 1 is to supply or absorb the real power

    demanded by converter 2 at the common DC link. It can also generate or

    absorb controllable reactive power and provide independent shunt reactive

    compensation for the line. Converter 2 supplies or absorbs the required

    reactive power locally and exchanges the active power as a result of the series

    injection voltage.

    A UPFC can regulate the active and reactive power simultaneously.

    In general, it has three control variables and can be operated in different

    modes. The shunt connected converter regulates the voltage of bus and the

    series connected converter regulates the active and reactive power or active

    power and the voltage at the series connected mode. In principle a UPFC is

    able to perform the functions of the other FACTS devices namely voltage

    support, power flow control and improved stability.

    STATIC SYNCHRONOUS COMPENSATOR (STATCOM)

    The static compensator consists of a voltage source converter, a

    coupling transformer and controls. The diagram of STATCOM is shown in

    Figure A5.4,

    The STATCOM performance focuses on,

    Dynamic voltage stabilization: increased power transfer capability,

    reduced voltage variations

    Synchronous stability improvements: increased transient stability,

    improved power system damping, damping of subsynchronous

    resonance

  • 157

    Dynamic load balancing

    Power quality improvement

    Steady-state voltage support

    Figure A5.4 Schematic diagram of STATCOM

    A STATCOM is a shunt connected reactive power compensation

    device that is capable of generating or absorbing reactive power and in which

    the output can be varied to control the specific parameters of an electric

    power system. The STATCOM is a static compensator and is used to regulate

    voltage and to improve dynamic stability. A STATCOM can supply the

    required reactive power under various operating conditions, to control the

    network voltage actively and thus, improve the steady state stability of the

    network. STATCOMs have the ability to address transient events at a faster

    rate and with better performance at lower voltages than a SVC.