18
CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION OF 99 MO/ 99M TC P. TKAC, K.E. WARDLE, M.A. BROWN, A. MOMEN, D.A. ROTSCH, J.M. COPPLE, S.D. CHEMERISOV, R. GROMOV, G.F. VANDEGRIFT September 11-14, 2016 2016 Mo-99 Topical Meeting

CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION OF 99MO/99MTC

drhgfdjhngngfmhgmghmghjmghfmf P. TKAC, K.E. WARDLE, M.A. BROWN, A. MOMEN, D.A. ROTSCH, J.M. COPPLE, S.D. CHEMERISOV, R. GROMOV, G.F. VANDEGRIFT

September 11-14, 2016 2016 Mo-99 Topical Meeting

Page 2: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

WHAT ARE THE ALTERNATIVES?

2

14.77%

9.23%

15.90%

16.68%9.56%

24.19%

9.67%

Mo-92

Mo-94

Mo-95

Mo-96

Mo-97

Mo-98

Mo-100

Mo100γ Mo99gamma

neutron

Accelerator production

Mo100 Tc99mproton

neutron

Cyclotron production

Mo98

γ

Mo99neutron

gamma

Reactor production on Mo target

• Enriched Mo-100 is available for ~$1000 per gram for kg quantities!!!

• Different generator technology is required

Page 3: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

ADVANTAGES AND DISADVANTAGES OF ALTERNATIVES

3

Advantages – Lower start-up costs – Commercial availability – Fast post-irradiation processing – Easier licensing procedure – Less costly waste disposal (no fission products)

Disadvantages – Lower production yields – Use of enriched Mo targets – Lower specific activity, which leads to requiring a different generator technology

Use of commercial reactors for production of Mo-99 using Mo98(n,γ)Mo99 Electron accelerator technology using Mo100(γ,n)Mo99 Availability of medical cyclotrons for direct production of Tc-99m world-wide

– Up to 70Ci of Tc-99m can be produced in two 6-h irradiations (500µA and 24MeV) – Short half-life requires very quick post-irradiation processing

Page 4: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

WORK AT ARGONNE

Radiation studies

Irradiation and processing of Mo targets using an electron linac

Dissolution studies to optimize Mo target properties

Large-scale dissolution studies with up to 600g of Mo

Recycle of enriched Mo-98 or Mo-100 material

4

Page 5: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

IRRADIATIONS PERFORMED IN FY16

5

The goal was to determine if Sn-stabilized peroxide can affect the radiochemical purity of the Tc/Mo product – Four UHP natural Mo targets irradiated – One 97.4% Mo-100 enriched target irradiated

Mo, g Activity at EOB, mCi Rf=0.9±0.1

H2O2 used H2O2 used, mL/g 99Mo 90Mo 93mMo 95mNb 95Nb 96Nb 99Mo 99mTc

UHP, 1.13 16.5 2.8 ND 0.79 0.11 2.34 91.3% 89.5% 30% NS 13.3 UHP, 1.05 15.3 1.8 0.01 0.79 0.07 1.98 99.7% 96.5% 50% Sn-stab 9.5 UHP, 1.06 13.5 2.2 ND 0.72 0.06 1.89 99.5% 95.8% 50% Sn-stab 18.9 UHP, 1.03 16.1 2.5 ND 0.83 0.07 2.22 99.3% 94.6% 30% NS 9.7

100Mo, 2.09 123.2 ND 0.04 0.05 ND ND 98.4% 98.3% 50% Sn-stab 31

Page 6: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

SMALL-SCALE DISSOLUTIONS – ORNL DISKS

6

3 D printed Mo d

wire like Disks broke down into small pieces

Wire-like particles

Longer diss. time vs. sintered

Opposite trend on open porosity

Laser-melt 3D printed Mo disks

AHM Recycled

75-150µm AHM reduced to 91±25µm Mo

150-400µm AHM reduced to 204±37µm Mo

MoO3 Recycled

75-150µm MoO3 reduced to 125-155µm Mo

Agglomerates of 1-10µm Mo particles 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

86.0% 88.0% 90.0% 92.0% 94.0% 96.0% 98.0%

diss

. rat

e, g

/min

theoretical density

75-150um AHM at 1500C

75-150um AHM at 1600C

150-400um AHM at 1500C

150-400um AHM at 1600C

75-150um MoO3 at 1600C

Page 7: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

SMALL-SCALE DISSOLUTIONS 29MM DISKS-ORNL DISKS

7

29x0.5mm disks

87-93% theoretical density

~29.5mm disks

9-24g per disk

Very good dissolution rates for up to 4mm thick disks

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4

diss

. rat

e, g

/min

disk thickness, mm

diss. of 29.5mm disks in 50% H2O2 pre-heated to 70°C

0.0

0.5

1.0

1.5

2.0

2.5

1 3 5 7 9 11 13

diss

. rat

e, g

/min

open porosity, %

Page 8: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

LARGE-SCALE DISSOLUTION 600G OF SINTERED MO DISKS

8

Disks, mm

H2O2 (L)

Water condensed from diss.,

L

Diss. time, h

Evaporation time, h

Total time, h

Total diss. rate, g/min

26x1 9.5 5.4 2.5 1.5 4.5 2.2

26x1 9.0 5.9 2.75 1 4.0 2.5

26x1 6.5 4.3 2.0 1.5 3.8 2.7

29.5x0.5 6.8 4.7 1.8 0 2.3 4.42

Last 26x1mm dissolution – 900mL of water condensed in 15min

Reaction heat: ~2.6kW

Chiller used: 1.7kW cooling capacity at 20°C

Page 9: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

LARGE-SCALE DISSOLUTION OF SINTERED MO DISKS

9

Page 10: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

MO RECYCLE PROCESS

10

SPENT GENERATOR SOLUTION

Need to be recycled to reuse enriched Mo-98, Mo-100 material for economic production

Generator solution contains ~2kg of K per kg of Mo

REQUIREMENTS

Recycling capacity of up to 400g/day

High recovery yield

No introduction of other elements that can lead to side reaction products

Recycled material ≤100mg-K/kg-Mo – separation factor required SF=1×104

Automated process

Page 11: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

MO RECYCLE PROCESS – SOLVENT EXTRACTION

11

Spent Mo generator solution

~0.3M Mo in ~5M HCl

HCl

~0.3M Mo in ~5M HCl

filtration

KCl solid waste

~0.3M Mo in TBP

TBP

K in aq. phase

NH4OH AHM +NH4Cl in NH4OH

evaporation

Solid AHM +NH4Cl

wash with EtOH

Solid AHM

Mo metal powder

reduction

NH4Cl in EtOH

evaporation Recycled EtOH

NH4Cl waste

Recycled TBP

Page 12: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

PLASTIC 3D PRINTED COUNTERCURRENT CENTRIFUGAL CONTACTOR

12

1 2 3 4 5 6 7 8

Mo feed in HCl

Fresh solvent

Spent solvent

Raffinate

Strip solution

Mo product

Page 13: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

COUNTER CURRENT CENTRIFUGAL CONTACTORS

13

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0 1 2 3 4 5 6 7 8 9 10

conc

entr

atio

n

stage

[K]aq

[K]org

Mo

feed

scru

b fe

ed

Mo

prod

uct

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0 1 2 3 4 5 6 7 8 9 10

conc

entr

atio

n

stage

[Mo]aq

[Mo]orgM

o fe

ed

scru

b fe

ed

Mo

prod

uct

Page 14: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

RECOVERY OF MO BY SOLVENT EXTRACTION BACK END PROCESSES

14

14 Ammonium heptamolybdate

Mo powder obtained from AHM

NH4OH waste

NH4OH solution

Evaporation

NH4Cl solid waste

Differential solubility in

ethanol-water mixture

Solid mixtureNH4Cl

(NH4)6Mo7O24

NH4Cl(NH4)6Mo7O24

(NH4)6Mo7O24

heat

MoO3 product

~98% recovery yield for Mo

AHM particle size distribution ~50% -40/+100 mesh 400-149µm ~40% -100/+200 mesh 149-74µm ~10% -200 mesh <74µm

Page 15: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

RECOVERY OF MO BY SOLVENT EXTRACTION BACK END PROCESSES

15

~5M HCl strip Ammonium molybdate

ppm (mg/kg-Mo) K 4.2E5 193 < 41

Na 2.6E3 2.7E3 < 43 P 2.5E3 2.7E3 < 111

Mg 70 133 < 19 Al 79 154 < 35 Ti 27 59 17 Fe < 66 96 < 42 As 31 20 71 Zr < 0.76 10 20 Nb 1.7 1.6 1.6 Cd 1.7E3 1.6E3 1.4E3 Sn 1.2E3 N/A 1.2E3 Te 97 71 79 W 3.2E3 3.0E3 2.2E3

Page 16: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

COMPLEXITY OF STRIPPING

16

𝑴𝑴𝑴𝑴𝑶𝑶𝟐𝟐𝟐𝟐+

𝐻𝐻3𝑀𝑀𝑀𝑀2𝑂𝑂63+

𝐻𝐻𝑀𝑀𝑀𝑀2𝑂𝑂6+ 𝐻𝐻2𝑀𝑀𝑀𝑀2𝑂𝑂62+

𝐻𝐻𝑀𝑀𝑀𝑀2𝑂𝑂53+ 𝑀𝑀𝑀𝑀2𝑂𝑂52+

Mo𝑂𝑂42−

𝑀𝑀𝑀𝑀𝑂𝑂2(𝑂𝑂𝐻𝐻)+

𝐻𝐻𝑀𝑀𝑀𝑀𝑂𝑂3+ 𝐻𝐻3𝑀𝑀𝑀𝑀𝑂𝑂4+

𝑀𝑀𝑀𝑀𝑂𝑂3 𝐻𝐻𝑀𝑀𝑀𝑀𝑂𝑂4− 𝐻𝐻2𝑀𝑀𝑀𝑀𝑂𝑂4 𝐻𝐻𝑀𝑀𝑀𝑀24𝑂𝑂783−

𝐻𝐻7𝑀𝑀𝑀𝑀12𝑂𝑂413− 𝐻𝐻𝑀𝑀𝑀𝑀7𝑂𝑂245− 𝑴𝑴𝑴𝑴𝟕𝟕𝑶𝑶𝟐𝟐𝟐𝟐𝟔𝟔−

𝐻𝐻𝑀𝑀𝑀𝑀6𝑂𝑂215− 𝑀𝑀𝑀𝑀4𝑂𝑂144− 𝑀𝑀𝑀𝑀3𝑂𝑂114−

pH 1 pH 3 pH 7

Page 17: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

CONCLUSIONS

17

- Dissolution rates of disks from recycled Mo material depends on Mo particle size Mo reduced from AHM has good properties for sintered disks Mo reduced from MoO3 lead to fine Mo particles – affects dissolution rate

- 3D printed disks in early stage of development show different dissolution characteristics

slower dissolution vs. sintered Mo disks opposite trend of dissolution rate on open porosity

- Developed process and equipment for quick dissolution of up to 600g of sintered Mo disks total processing time for 600g of Mo is ~4hrs hot cell mock up

- Developed an efficient recycle process for enriched Mo material with high recovery yields

automated solvent extraction using 3D-printed centrifugal contactors good particle size distribution of recovered AHM

Page 18: CHEMICAL PROCESSING FOR NON-URANIUM PRODUCTION MO/ TC · 2016-09-27 · Mo-92 Mo-94 Mo-95 Mo-96 Mo-97 Mo-98 Mo-100 γ Mo100 Mo99 gamma neutron Accelerator production Mo100 Tc99m proton

ACKNOWLEDGMENTS

18

FUNDING Work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.