327
CHARACTERIZATION OF MODIFIED WOOD IN RELATION TO WOOD BONDING AND COATING PERFORMANCE Workshop Proceedings Edited by Dr. Sergej Medved & Dr. Andreja Kutnar COST Action FP0904 “Thermo–Hydro–Mechanical Wood Behaviour and Processing” and COST Action FP1006 “Bringing new functions to wood through surface modification” Department of Wood Science and Technology Biotechnical Faculty, University of Ljubljana and University of Primorska, Andrej Marušič Institute Rogla, Slovenia, October 16 th to 18 th , 2013

CHARACTERIZATION OF MODIFIED WOOD IN RELATION TO …cost-fp1006.fh-salzburg.ac.at/fileadmin/documents/... · ash wood with EPI adhesives Krystofiak Tomasz, Lis Barbara, Muszyńska

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  •  

    CHARACTERIZATION  OF  MODIFIED  WOOD  IN  RELATION  TO  WOOD  BONDING  AND  

    COATING  PERFORMANCE  Workshop  Proceedings  

    Edited  by  Dr.  Sergej  Medved  &  Dr.  Andreja  Kutnar  

    COST  Action  FP0904  “Thermo–Hydro–Mechanical  Wood  Behaviour  and  Processing”  

    and  

    COST  Action  FP1006  “Bringing  new  functions  to  wood  through  surface  modification”  

    Department  of  Wood  Science  and  Technology  

     Biotechnical  Faculty,  University  of  Ljubljana  

     and  

    University  of  Primorska,  Andrej  Marušič  Institute  

     

    Rogla,  Slovenia,  October  16th  to  18th,  2013    

  •    

    II  

    ©Sergej  Medved,  Andreja  Kutnar  

    Proceedings  of  the  COST  FP0904  &  FP1006  International  Workshop  on  Characterization  of  

    modified  wood   in   relation   to  wood   bonding   and   coating   performance,   Rogla,   Slovenia,  

    October  16th  to  18th  2013  

    Editor:   Sergej  Medved,  Andreja  Kutnar  

    Publisher:   University   of   Ljubljana,   Biotechnical   Faculty,   Department   of   Wood  

    Science   and   Technology,   Rožna   dolina,   Cesta   VIII/34,   1000   Ljubljana,  

    Slovenia.  Phone:  +386  1  320  30  00,  Fax:  +386  1  257  22  97  

      University  of  Primorska,  Andrej  Marušič   Institute,  Muzejski   trg  2,  6000  

    Koper,  Slovenija.  Phone  +386  5  611  75  00,  Fax:  +386  5  611  75  30  

    Edition:   100  copies  

    Ljubljana,  2013  

    CIP  –  Kataložni  zapis  o  publikaciji  Narodna  in  univerzitetna  knjižnjica,  Ljubljana    674.028.9(082)  630*82(082)    COST  Action  FP0904  Thermo-‐Hydro-‐Mechanical  Wood  Behaviour  and  Processing   (2013   ;  Rogla)                Characterization   of   modified   wood   in   relation   to   wood   bonding   and   coating  performance   :   workshop   proceedings   /   COST   Action   FP0904   Thermo-‐Hydro-‐Mechanical  Wood   Behaviour   and   Processing   and   COST   Action   FP1006   Bringing   New   Functions   to  Wood  through  Surface  Modification,  Rogla,  Slovenia,  October  16th  to  18th,  2013  ;  edited  by   Sergej   Medved   &   Andreja   Kutnar   ;   [organizers]   Department   of   Wood   Science   and  Technology,   Biotechnical   Faculty,   University   of   Ljubljana   and   University   of   Primorska,  Andrej  Marušič   Institute.  -‐  Ljubljana  :  Biotechnical  Faculty,  Department  of  Wood  Science  and  Technology  ;  Koper  :  University  of  Primorska,  Andrej  Marušič  Institute,  2013      ISBN   978-‐961-‐6144-‐37-‐7   (Biotechnical   Faculty,   Department   of   Wood   Science   and  Technology)    1.  Gl.  stv.  nasl.  2.  Medved,  Sergej  3.  COST  Action  FP1006  Bringing  New  Functions  to  Wood  through  Surface  Modification  (2013  ;  Rogla)  4.  Biotehniška  fakulteta  (Ljubljana).  Oddelek  za  lesarstvo  5.  Univerza  na  Primorskem  (Koper).  Inštitut  Andrej  Marušič    269303808    

  •    

    III  

    The   opinions   expressed   in   the   presented   papers   are   those   of   the   authors   and   do   not  

    necessarily  represents  those  of  the  editor.  

    All   rights   reserved.  No  parts  of   these  Proceedings  may  be  reproduced  or   transmitted   in  

    any   form  or   by   any  means,   including  photocopy,   recording,   or   any   information   storage  

    and  retrieval  system,  without  permission  in  writing  from  publisher.  

    Technical  editor:  Sergej  Medved  

    Printed  by:   Somaru,  d.o.o.  Rožna  dolina,  Cesta  XV/26,  1000  Ljubljana,  Slovenia  

  • I    

    PREFACE  

    About  COST  Action  FP0904  

    The  polymeric   components  of  wood  and   its   porous   structure   allow   its   properties   to  be  

    modified  under  the  combined  effects  of  temperature,  moisture  and  mechanical  action  –  

    so-‐called   Thermo-‐Hydro-‐Mechanical   (THM)   treatments.   Various   types   of   processing  

    techniques,   including   high   temperature   steam   with   or   without   an   applied   mechanical  

    force,  can  be  utilized  to  enhance  wood  properties,  to  produce  eco-‐friendly  new  materials  

    and  to  develop  new  products.  During  these  THM  treatments,  wood  undergoes  mechano-‐

    chemical   transformations,  which   depend   upon   the   processing   parameters   and  material  

    properties.  An  investigation  of  these  phenomena  requires  collaboration  between  groups  

    from  different  wood  disciplines;  however,  to  date  research  has  been  rather  fragmented.  

    This   COST  Action   aims   to   apply   promising   techniques   in   the   fields   of  wood  mechanics,  

    wood  chemistry  and  material  sciences  through  an   interdisciplinary  approach  to   improve  

    knowledge   about   the   chemical   degradation   and   mechanical   behavior   of   wood   during  

    THM   processing.   This   will   help   overcome   the   challenges   being   faced   in   scaling-‐up  

    research   findings,   as  well   to   improving   full   industrial   production,   process   improvement  

    and  the  enhancement  of  product  properties  and  the  development  of  new  products.  

    About  COST  Action  FP1006  

    Many   applications   of   products   are   determined   by   their   special   surface   properties,   and  

    based  on  the  physical,  chemical  and  biological  interchange  of  various  molecules  with  the  

    materials   surface.  This   is  especially   true   for   the  use  of  wood  and  wood  based  products  

    due   to   the   special  wood   characteristics   like   anisotropy,   UV-‐degradation.   Thus,   bringing  

    new  functions  to  wood  through  surface  modification   is  needed   in  order  to  enhance  the  

    quality  of  the  existing  wood  products  and  to  open  the  way  to  new  applications,  products  

    or  markets.  

    This  COST  Action  aims  to  provide  the  scientific-‐based  framework  and  knowledge  required  

    for   enhanced   surface   modification   of   wood   and   wood   based   products   towards   higher  

    functionalization   and   towards   fulfillment   of   higher   technical,   economic   and  

  • II    

    environmental  standards.  This  will  be  achieved  by  working  within  three  main  areas:  Wood  

    surface   modification   and   functionalization,   Wood   interface   modification   and   interface  

    interaction  and  Process  and  Service  life  modelling.  

    The   aim   of   this   event   is   to   present   materials,   technologies,   and   characterization  

    techniques  in  relation  to  wood  bonding  and  coating  performance  of  modified  wood:  

    •   Modification  techniques  (new  and/or  improved)  

    •   Characterization  of  modified  wood  surface    

    •   Formation  and  properties  of  the  bond  line/coating  system  

    •   Performance  of  coated  modified  wood  

    •   Performance  of  bonded  modified  wood  

    •   Performance  of  surface  wood  –  based  panels  made  from/or   in  combination  with  

    modified  wood  

    The  Workshop  has  been  organized  by  the  Department  of  Wood  Science  and  Technology,  

    Biotechnical   Faculty,   University   of   Ljubljana   and   Andrej  Marušič   Institute,   University   of  

    Primorska.   Support   and   help  was   also   provided   by   the   Scientific   Committee,   reviewers  

    and  by   the  COST   FP0904  and   FP1006  Management  Committee.   The  organisers   and   the  

    editors   would   like   to   thank   to   all   that   help   at   organizing   this   Workshop,   reviewers,  

    speakers  and  also  session  moderators.  

    We  hope   that   you  enjoyed   the  Workshop  and   that   you  will   find   these  papers  useful   in  

    your  future  work.  

    Sergej  Medved  

    Andreja  Kutnar  

       

  • III    

    ORGANISING  SCIENTIFIC  COMMITTEE  AND  REVIEWERS  

    Stefanie  Wieland  (FP1006  Chair)  

    Parviz  Navi  (FP0904  Chair)  

    Lone  Ross  Gobakken  (FP1006  Vice  Chair)  

    Dennis  Jones  (FP0904  Vice  Chair)  

    Mark  Hughes  (FP0904  WG1  Leader)  

    Lennert  Salmen  (FP0904  WG2  Leader)  

    Peer  Haller  (FP0904  WG3  Leader)  

    Gerhard  Gruell  (FP1006  WG1  Leader)  

    Holger  Militz  (FP1006  WG1  Vice-‐Leader)  

    Electra  Papadopoulou  (FP1006  WG2  Leader)  

    Graham  Ormondroyd  (FP1006  WG2  Vice-‐Leader)  

    Sergej  Medved  (FP1006  WG3  Leader)  

    Jakub  Sandak  (FP1006  WG3  Vice-‐Leader)  

    Andreja  Kutnar  (FP0904  member)  

       

  • IV    

    TABLE  OF  CONTENTS  

    THM  –  a  Technology  Platform  or  Novelty  Product?  Frederick  A.  Kamke  ...........................................................................................................  8  

    Characterization  of  laser  modified  wood  surfaces  for  resin-‐free  adhesion  Scott  Renneckar,  W.  Travis  Church,  Jeffrey  Dolan,  Zhiyuan  Lin,  Charles  E.  Frazier  ........  16  

    Emissions  of  thermally  modified  timber  products  Lothar  Clauder,  Maria  Rådemar,  Lars  Rosell,  Marcus  Vestergren,  Alexander  Pfriem  ....  23  

    Application  of  FT-‐NIR  for  recognition  of  substances  used  for  conservation  of  wooden  parquets  of  19th  century  manor  houses  located  in  South-‐Eastern  Poland  

    Anna  Rozanska,  Anna  Sandak  ........................................................................................  32  

    Gluability  of  thermally  modified  ash  wood  with  EPI  adhesives  Krystofiak  Tomasz,  Lis  Barbara,  Muszyńska  Monika,  Sobota  Karolina  ..........................  43  

    Bondability  of  phenol  formaldehyde  modified  beech  wood  glued  with  phenol  resorcinol  formaldehyde  and  polyvinyl  acetate  adhesives  

    Alireza  Bastani,  Holger  Militz  .........................................................................................  52  

    Bonding  properties  of  wood  modified  with  various  siloxanes  and  silanes  Marcus  Müller,  Markus  Hauptmann,  Christian  Hansmann  ............................................  61  

    Viscoelastic  thermal  compressed  wood  as  a  component  in  green  building  composites  Milan  Sernek,  Aleš  Ugovšek,  Andreja  Kutnar,  Frederick  A.  Kamke  .................................  67  

    Effect  of  heat  treatment  of  spruce  on  adhesive  bond  performance  after  soaking  in  water  

    Mirko  Kariz,  Manja  Kitek  Kuzman,  Milan  Sernek  ...........................................................  74  

    Effect  of  treatment  medium  on  the  moisture  uptake  rate  and  colour  change  during  natural  weathering  of  heat  treated  wood  

    Miklós  Bak,  Róbert  Németh,  Diána  Csordós,  László  Tolvaj  ............................................  80  

    The  Effect  of  Surface  Weathering  on  the  Water  Sorption  Properties  of  Wood  Callum  Hill  ......................................................................................................................  87  

    Coated  Surface  Densified  Wood:  Water  Vapour  Absorption  and  Desorption  and  Related  Dimensional  Changes  

    Marko  Petrič,  Mark  Hughes,  Borut  Kričej,  Andreja  Kutnar,  Kristiina  Laine,  Sergej  Medved,  Matjaž  Pavlič,  Lauri  Rautkari  ...........................................................................  94  

       

  • V    

    Water  repellent  efficiency  of  wood  treated  with  copper–azole  combined  with  silicone  and  paraffin  emulsions  

    Hüseyin  Sivrikaya,  Ahmet  Can  ......................................................................................  101  

    Wood  moisture  analysis  under  THM-‐conditions  by  employing  scaling  properties  of  room  temperature  moisture  isotherms  

    Wim  Willems  ................................................................................................................  116  

    A  structural  study  of  the  white  rot  biodegraded  lime  wood  coated  with  poly(hydroxy  urethane  acrylate)  

    Carmen-‐Mihaela  Popescu,  Maria-‐Cristina  Popescu  .....................................................  123  

    Wax  impregnation  slows  down  photodegradation  processes  of  wood  Boštjan  Lesar,  Matjaž  Pavlič,  Marko  Petrič,  Miha  Humar  ............................................  130  

    Weathering  performance  of  coatings  on  acetylated,  furfurylated  and  heat  treated  wood  at  two  exposure  sites  in  Europe  

    Laurence  Podgorski,  Gerhard  Grüll,  Michael  Truskaller,  Jean-‐Denis  Lanvin,  Véronique  Georges,  Susanne  Bollmus  ...........................................................................................  140  

    Surface  performance  of  thermally  modified  wood  during  weathering  Michael  Altgen,  Jukka  Ala-‐Viikari,  Antti  Hukka,  Timo  Tetri,  Holger  Militz  ...................  149  

    Surface  qualification  of  weathered  wood  Jean  Strautmann,  Marion  Noël,  Thomas  Volkmer  .......................................................  157  

    The  Influence  of  the  Sodium  Carbonate  Treatment  of  Narrow-‐leaved  Ash  on  the  Lap  Shear  Strength  

    Jasmina  Popović,  Milanka  Djiporović-‐Momčilović,  Ivana  Gavrilović-‐Grmuša,  Mladjan  Popović,  Sergej  Medved  ...............................................................................................  167  

    Combined  treatment  using  boron  impregnation  and  thermo-‐modification  to  improve  properties  of  heat  treated  wood  -‐  Effects  of  additives  on  boron  leachability  

    Solafa  Salman,  Anélie  Petrissans,  Marie  France  Thevenon,  Stéphane  Dumarcay,  Benoît  Pollier,  Philippe  Gerardin  ..............................................................................................  175  

    Superb  wood  surface  finishing  –  SWORFISH  project  approach  Jakub  Sandak,  Anna  Sandak,  Mariapaola  Riggio,  Ilaria  Santoni  ..................................  191  

    Contact  angle  measurement  as  a  method  for  quantitative  analysis  of  wettability  of  plasma  treated  thermal  modified  timber  

    Judith  Sinic,  Uwe  Müller  ...............................................................................................  198  

    Spectral  study  of  hydro-‐thermal  treated  lime  wood  Maria-‐Cristina  Popescu,  Carmen-‐Mihaela  Popescu  .....................................................  206  

       

  • VI    

    The  comparison  of  fungal  and  bacterial  laccase  ability  to  oxidise  different  lignin  model  compounds  and  isolated  lignins  from  lignocellulosic  fibres  

    Helena  Krajnc,  Vanja  Kokol  ..........................................................................................  213  

    Exploratory  Thermal-‐Hydro-‐Mechanical  Modification  (THM)  of  Moso  Bamboo  (Phyllostachys  pubescens  Mazel)  

    K.E.  Semple,  F.A.  Kamke,  A.  Kutnar,  G.D.  Smith  ...........................................................  220  

    The  sorption  properties  of  some  thermally  treated  hardwoods  analysed  by  thermodynamics,  surface  fractality  and  FT-‐NIR  spectroscopy  

    Aleš  Straže,  Željko  Gorišek,  Stjepan  Pervan,  Anna  Sandak,  Jakub  Sandak  ...................  228  

    Modification  of  wood  acoustic,  hygroscopic  and  colorimetric  properties  due  to  thermally  accelerated  ageing  

    Elham  Karami,  Miyuki  Matsuo,  Iris  Bremaud,  Sandrine  Bardet,  Julien  Froidevaux,  Joseph  Gril  ....................................................................................................................  238  

    Changes  in  technological  properties  of  thermally  treated  Gympie  messmate  wood  Pedro  Henrique  Gonzalez  de  Cademartori,  Patrícia  Soares  Bilhalva  dos  Santos,  Darci  Alberto  Gatto,  Jalel  Labidi  ............................................................................................  246  

    Changes  in  chemical  composition  occurring  in  wood  during  the  hydrothermal  treatment  process  

    René  Herrera,  Xabier  Erdocia,  Jalel  Labidi  ....................................................................  254  

    Colour  changes  in  coated  hydrothermally  modified  wood  after  artificial  and  outdoor  exposure  

    Sansonetti  E.,  Cirule  D.,  Grinins  J.,  Andersone  I.,  Andersons  B.,  ...................................  261  

    Characterization  of  wood  surface  degradation  using  activation  spectra  approach  Vjekoslav  Živković,  Martin  Arnold,  Klaus  Richter,  Hrvoje  Turkulin  ...............................  268  

    Advantage  of  vacuum  versus  nitrogen  to  achieve  inert  atmosphere  during  wood  thermal  modification  

    K.  Candelier,  S.  Dumarçay,  A.  Pétrissans,  P.  Gérardin,  M.  Pétrissans  ...........................  279  

    A  Rapid  Method  for  Assessing  Check  Development  in  Veneer  Overlays  Michael  Burnard,  Lech  Muszyński,  Scott  Leavengood,  Lisa  Ganio  ...............................  287  

    The  grindability  of  heat  treated  biomass:  effect  of  treatment  intensity  on  the  production  of  particles  suitable  for  the  2nd  generation  of  BtL  chain  

    F.  Pierre,  P.  Lu,  G.  Almeida,  P.  Perre  .............................................................................  296  

    Stresses  in  the  plans  of  bond  lines  in  reconstituted  solid  wood  under  moisture  variation:  a  numerical  approach  

    Sung-‐Lam  Nguyen,  Rostand  Moutou  Pitti,  Jean-‐François  Destrebecq  .........................  303  

  • VII    

    Heat  flux  study  of  mild  pyrolyzed  wood  and  components  through  microcalorimetry  Pin  Lv,  Floran  Pierre,  Giana  Almeida,  Liang  Li,  Patrick  Perré  ........................................  310  

    Analysis  of  the  effects  of  the  European  oak  natural  variability  on  the  modification  of  the  density  distribution  and  chemical  composition  during  the  heat  treatment  

    Joël  Hamada,  Anélie  Petrissans,  Frédéric  Mothe,  Mathieu  Petrissans,  Philippe  Gerardin  .....................................................................................................................................  317  

     

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    8    

    Keynote  paper/presentation  

    THM – a Technology Platform or Novelty Product?

    Frederick  A.  Kamke  

    Dept.  Wood  Science  &  Engineering,  Oregon  State  University,  Corvallis,  Oregon  USA  

    97331,  [email protected]  

    ABSTRACT  

    Thermal-‐Hydro-‐Mechanical   (THM)   processing   is   an   old   idea   that   has   arisen  with   a   new  

    life.   THM   wood   has   impressive   mechanical   and   physical   properties,   but   this   exciting  

    technology   has   some   serious   challenges   for   commercialization.   This   paper   defines   the  

    concept   and   scope   of   THM   technology   and   provides   some   examples   of   commercial  

    application.  Recent  research  in  Europe,  Asia,  and  North  America  has  clearly  demonstrated  

    that   THM   processing   of   wood   improves   strength,   stiffness,   hardness,   and   moisture  

    resistance;  and  this   implies  that  the  value  of  wood  is  also  enhanced.  The  broad  array  of  

    process   parameters   and   unique   conditions   clearly   differentiates   THM   as   a   technology  

    platform.  However,  THM  adds  cost  to  processing  and  reduces  wood  volume.  THM  wood,  

    depending  on  the  specific  process  conditions,  may  have  large  potential  for  swelling  when  

    exposed   to   water.   Technical   challenges   and   process   cost  may   limit   THM   processing   to  

    novelty   products.   Clever   scientists   and   engineers   can   address   most   of   the   technical  

    disadvantages  of  THM  processing.  However,  the  challenge  for  an  entrepreneur,  who  has  

    visions  for  commercialization,  is  to  create  THM  value  that  exceeds  THM  cost.  

    Keywords:   wood  modification,  compression,  densification,  thermo-‐hydro-‐mechanical.  

    1 INTRODUCTION  

    Thermo-‐Hydro-‐Mechanical   (THM)  processing   is  an  old   idea  that  has  been  given  new  life  

    via  research  efforts  around  the  world.  It’s  a  very  interesting  concept  –  take  some  wood,  

    soften  it  with  heat  and  steam,  compress,  and  viola!,  the  result  is  a  high  density  material  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    9    

    with   improved   strength,   stiffness,   and   hardness.   The   process   is   simple,   it   requires   no  

    chemicals,  and  the  properties  of  the  wood  are  dramatically  improved.  So  why  hasn’t  THM  

    processing   been   readily   adopted?   This   paper   will   provide   some   historical   background,  

    discuss  challenges  of  commercialization,  and  present  some  personal  observations.      

    1.1 BRIEF  THM  HISTORY  

    THM   processing   implies   the   strategic   application   of   high   temperature,   moisture,   and  

    mechanical   compression   toward   the  goal  of   reducing   the  void   space   in  wood,  and   thus  

    increasing   density.   Prior   to   1960,   researchers   and   practitioners   quickly   recognized   that  

    temperatures  above  100°C,  along  with  some  moisture,  sufficiently  softens  wood  such  that  

    it  may  be  compressed  without  catastrophic  failure.  The  moisture  content  was  usually  not  

    controlled   during   the   densification   process,   and   microscopic   fractures   in   the   cell   wall  

    were  often  ignored.  Compression  was  performed  in  hydraulic  pressing  systems  that  were  

    open   to   atmospheric   conditions   (open   systems).   Many   wood   densification   equipment  

    designs  and  processing  conditions  were   reported.  While   the  details  of  why   this  process  

    worked  were  perhaps  not  clearly  understood,  the  efforts  produced  wood  products  with  

    interesting   characteristics.   For   the   purpose   of   the   present   discussion,   the   use   of   high  

    temperature   and  mechanical   compression,   in   the   presence   of   significant  moisture,   and  

    with  the  intent  to  increase  density,  will  be  called  THM  processing.      

    Previous   reviews   of   THM   wood,   also   called   “compressed   wood”   or   “densified   wood”,  

    reveal  that  a  significant  amount  of  research  and  some  commercialization  has  occurred  in  

    Europe  and  the  United  States  (Kollman  1936,  Morsing  2000,  Sandberg  et  al.  2012)  prior  to  

    1960.   Kollman   (1936)   described   the   state-‐of-‐the-‐art   for   compressed   wood,   and   even  

    mentioned  some   investigations   in  Germany   in   the   late  19th   century.  Seborg  and  Stamm  

    (1941)   reported   results   from   some   early   investigations   of   compressed   wood   that   was  

    performed   at   the   U.S.   Forest   Products   Laboratory   in  Madison,  Wisconsin.   Readers   are  

    referred  to  these  previous  reviews  for  more  information  about  early  THM  processing.  

    Research   in   the   U.S.   led   to   very   limited   commercial   application.   In   1943   the   Formica  

    Insulation   Company   (Cincinnati,   Ohio)   marketed   Pregwood,   which   was   a   phenol-‐

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    10    

    formaldehyde   impregnated,   laminated,   veneer   product   that   was   processed   with   50%  

    degree  of  compression.  Pregwood  was  designed  for  the  hub  of  aircraft  propeller  blades  

    with   length   up   to   5m   (Weick   1939).   Pregwood   was   produced   from   parallel-‐laminated  

    maple  veneer,  with  density  of  1300  kg/m3,  MOE  of  24  GPa,  and  MOR  of  330  MPa.  Resin  

    impregnation  was  needed  to  overcome  the  greatest   technical  challenge   for  THM  wood,  

    namely  moisture-‐induced  dimensional   instability.  Other  early  applications  of  THM  wood  

    for   commercial   products   were   bobbins,   picker   sticks,   and   shuttles   used   in   the   textile  

    industry;   as   well   as   machine   dyes,   antenna   masts   and   knife   handles.   Most   of   these  

    products  were  resin-‐impregnated  (presumed  for  dimensional  stabilization).  

    Since   1990   there   has   been   renewed   interest   in   developing   THM   products.   Research   in  

    Japan   explored   surface   densification   of   lumber   (Inoue   et   al.   1990),   shape-‐forming   of  

    round  wood  into  prismatic  shapes  (Ito  et  al.  1998),  and  fixation  of  set  recovery  by  hydro-‐

    thermal  and  chemical  treatment  (Inoue  et  al.  1993a,  Inoue  et  al.  1993b).    In  Europe,  one  

    critical  area  of  focus  was  the  problem  of  shape  recovery  upon  exposure  to  water  (Navi  et  

    al.  1997,  Tomme  et  al.  1998).  For  more  details  refer  to  Sandberg  et  al.  (2012).  The  current  

    COST  Action  FP0904  is  further  evidence  of  renewed  research  interest  in  THM  processing,  

    however,  commercial  application  is  still  very  limited.  

    1.2 COMMERCIAL  PRODUCTS  

    Solid   THM   wood   products   are   rare   to   find   on   the   commercial   market.   Calignum  

    (Gothenburg,  Sweden),  who  developed  a  densified  solid  wood  via  an  isostatic  membrane  

    press,  liquidated  its  assets  in  2012.  The  Calignum  technology  was  acquired  by  the  Tarkett  

    Company   (Nanterre   Cedex,   France),   who   also   announced   their   intension   to   produce   a  

    densified  eucalyptus   flooring  product   in  2011.  Apparently,   this  has  not  occurred.    There  

    are   some   commercial   operations   in   Japan.   However,   information   has   been   difficult   to  

    obtain.  MyWood2  Corporation  (Iwakura,  Aichi,  Japan)  manufactures  densified  solid  cedar  

    wood  products.  Their  primary  market  is  flooring  in  Japan  and  China,  and  products  are  sold  

    for  use  in  furniture.  The  MyWood2  product  is  impregnated  with  a  proprietary  polymer  to  

    provide  resistance  to  water,  and  compression  is  approximately  50  percent.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    11    

    Electric   transmission   support   components   made   from   THM   wood   are   typically   resin-‐

    impregnated,   laminated   veneer.   Low   molecular   weight   resins   (typically   phenol-‐

    formaldehyde)  are  used  to  impregnate  veneer,  which  is  then  partially  cured  in  an  oven.  A  

    billet  is  then  formed  from  the  laminas,  with  orientation  of  the  veneer  dependent  on  the  

    intended   application.   The   billets   are   compressed   in   a   heated   press   (open   system)   to  

    density  of  approximately  1300  kg/m3.  This   line  of  products   is  desired   for  high  electrical  

    resistivity,   high   dimensional   stability,   and   high   strength   to   weight   ratio.   Another  

    application   or   resin-‐impregnated   veneer   THM   is   liquid   natural   gas   (LNG)   storage  

    containers   and   associated   support   structures.   A   laminated   design   permits   components  

    with  wide  dimensions  that  could  not  be  achieved  with  THM  lumber.  For  this  application,  

    low  thermal  conductivity,  high  dimensional  stability,  and  high  strength  to  weight  ratio  are  

    important.  Other  applications  for  resin-‐impregnated  veneer  THM  include  wear  plates  for  

    machinery  and  transportation  vehicles,  machine  pattern  molds,  bulletproof  barriers,  and  

    some   structural   building   components.   There   are   several   products   in   this   market,  

    including,  but  not  limited  to,   Insulam®  by  CK-‐Composites  (Mount  Pleasant,  Pennsylvania  

    USA),   Lignostone®   by   Röchling   (Harren,   Gemany)   and   Lignostone®   (Ter   Apel,    

    Netherlands),   dehonit®   by   Deutsche   Holzveredelung   Schmeing   GmbH   &   Co.   KG  

    (Kirchhundem/Würdinghausen,  Germany),  and  Ranprex®  by  Rancan  Srl  (Vincenza,  Italy).    

    The  PureTimber  company  (Gig  Harbor,  Washington  USA)  produces  a  cold  bendable  wood  

    product  that  was  patented  by  the  Danish  Technical   Institute  (Hansen  et  al.  1993).  Other  

    companies   have   licensed   the   technology   (e.g.   Compwood   Products,   Hungary).   The  

    method   employs   THM   techniques   to   compress   wood   elements   (approx.   2.5   m)   in   the  

    longitudinal  direction.   Length   is   reduced  approximately  20%   in  process,  but   recovers   to  

    approximately   90%   of   original   dimension   when   complete.   The   wood  moisture   content  

    must  be  above  25%.  Side  restraint  prevents  buckling,  however,  the  cell  walls  buckle,  and  

    partial  shear  failure  between  adjacent  cell  wall  layers  probably  occurs.  While  the  wood  is  

    still  wet,   it  may  be  bent  in  one  or  two  axes  with  little  mechanical  force.  Once  dried,  the  

    wood   is   no   longer   bendable.   Applications   include   architectural   woodwork,   furniture,  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    12    

    musical  instruments,  and  boat  hulls.  Retail  cost  is  approximately  $19,000/m3,  so  this  is  an  

    example  of  very  high  value  and  low  production  volume  THM  wood.      

    2 CHALLENGES  FOR  COMMERCIALIZATION  

    The  greatest  challenges  for  expanded  commercialization  of  THM  technology  are:  1)  scale-‐

    up   from   laboratory   processes,   2)   loss   of   volume   yield,   3)   swelling   potential,   and   4)  

    profitability.  All  of  these  challenges  are  related  in  some  way,  and  any  one  of  them  may  be  

    overcome  with  clever  engineering  or  the  right  product  application.    

    The   challenge   of   scale   depends   on   the   industrial   application.   If   the   application   is   high  

    value,  a  simple  batch  process,  with  moderate  capital  investment,  may  be  adequate.  One  

    must   also   consider   the   physics   of   heat   and  mass   transfer,   as   well   as   the   compression  

    forces  required  for  a   large  THM  device.  The  time  required  for  a  specific   temperature  or  

    moisture   content   change   via   unsteady-‐state   heat   and   mass   transfer   is   approximately  

    proportional   to   the   second   power   of   the   principal   thickness   of   the   material   being  

    processed.   If   one   doubles   the   thickness,   the   processing   time   required   to   achieve   the  

    desired   change   in   temperature   or   moisture   content   increases   by   a   factor   of   four.   For  

    example,  a  THM  process  step  that  requires  10  minutes  in  a  small   laboratory  device  may  

    require  100  minutes  to  produce  a  larger  commercial  product.    The  impact  on  production  

    capacity  is  devastating.  Compression  force  (e.g.  N,  not  N/mm2)  on  a  small  laboratory  test  

    sample   increases   in   proportion   to   the   area   normal   to   the   direction   of   applied   force.  

    Consequently,  hydraulic  pumps  and  press   frames   in  a   commercial   THM  device  must  be  

    sized  accordingly,  with  significant  impact  on  capital  investment.      

    Most  wood  processing   companies   closely  monitor   the   volume  of  wood   that   enters   the  

    factory   and   the   volume   of   production   that   leaves   the   factory.   Productivity   is   often  

    expressed   as   percentage   of   volume   yield.  Most   THM   technologies   dramatically   reduce  

    volume,   perhaps   by   50%   or   more.   Traditional   wood   processing   mentality   resists   any  

    change  that  reduces  volumetric  productivity,  even  if  the  process  is  profitable.  

    The  moisture-‐induced  swelling  potential  of  wood  is  proportional  to  its  density.  Swelling  of  

    untreated  wood  is  reversible,  but  most  swelling  of  THM  wood  is  not  reversible.  Additional  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    13    

    process  steps  may  be  used  to  reduce  THM  swelling,  such  as  hydro-‐thermal  treatment  or  

    some  chemical  treatment.  However,  additional  treatment  adds  cost  to  the  final  product,  

    and  may  cause  undesirable  characteristics,  such  as  darker  color  and  embrittlement.  

    Processing   cost   is   not   the   critical   factor   for   THM   wood.   Profitability   determines  

    commercial   success.  All  of   the   technical   challenges  may  be  overcome,  and   indeed  have  

    been  achieved  as  demonstrated  by  numerous   research   reports.   If   the  value  of   the   final  

    product  significantly  exceeds  the  cost  of  production,  then  the  commercial  enterprise  will  

    be   viable.   As   researchers,   we   provide   technical   solutions   to   problems.   However,  

    sometimes  we  must  define  the  problem  within  the  limitations  of  commercial  reality.  

    3 PROPOSED  APPLICATIONS  AND  OBSERVATIONS  

    THM  processing  is  a  technology  platform.  There  are  several  process  parameters  that  may  

    be   manipulated   to   create   intermediate   or   final   products   with   a   broad   range   of  

    application.     With   a   robust   menu   of   products,   a   manufacturer   may   readily   adapt   to  

    changing   markets   and   price   volatility.   The   long-‐term   success   of   the   manufacturers   of  

    resin-‐impregnated   veneer   THM   products   is   due   to   the   many   high   value   product  

    applications.   The   same   capital   equipment   is   used   to  produce  products   for   the   tool   and  

    dye   industry,   electrical   power   distribution,   and   cryogenic   fluid   storage   and   transport  

    industries.  The  manufacturer  manipulates  density,  resin  content,  and  veneer  orientation  

    to   effectively   support   each   of   these   industries.   Solid   THM   wood   flooring   is   the   target  

    market  for  MyWood2  and  Tarkett.  I  believe  an  engineered  composite  would  be  more  cost  

    effective   and   a   more   efficient   use   of   raw   materials   in   flooring   applications.   My   own  

    research  has  examined  the  use  of  THM  wood  veneer  in  laminated  veneer  lumber  (LVL)  for  

    building  construction.  Profitability  for  commodity  building  products  depends  on  low  cost.  

    THM-‐LVL   has   been   demonstrated   to   have   superior   mechanical   properties   than  

    conventional   LVL,   but   processing   cost   is   higher.   Therefore,   THM-‐LVL   can’t   compete  

    against   current   LVL   products.   Either   higher   value   LVL   applications   are   needed   or   raw  

    material  cost  must  be  lower.  The  key  to  commercial  success  is  to  establish  a  technology  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    14    

    platform,   where   one   facility   has   the   capability   to   manufacture   a   broad   range   of   THM  

    products  as  the  market  evolves.          

    4 REFERENCES  

    Hansen   O.,   Ljorring   J.,   Thomassen   T.   1993.   Method   and   apparatus   for   compressing   a  

    wood  sample,  US  Patent  No.  5190088A.  

    Inoue,  M.,  Norimoto,  M.,  Otsuka,  Y.,  Yamada,  T.  1990.  Surface  compression  of  coniferous  

    lumber,  I.  A  new  technique  to  compress  the  surface  layer.  Mok.  Gak.  36(11):969-‐975.  

    Inoue,  M.,  Norimoto,  M.,  Tanahashi,  M.  1993a.  Steam  or  heat  stabilization  of  compressed  

    wood.  Wood  and  Fiber  Sci.  25(3):  224-‐235.  

    Inoue,   M.,   Norimoto,   M.,   Tanahashi,   M.,   Rowell,   M.   1993b.   Steam   or   heat   fixation   of  

    compressed  wood.  Wood  and  Fiber  Sci.,  25(3),  224-‐235.  

    Inoue,  M.,  Norimoto,  M.,  Tanahashi,  M.,  Rowell,  M.  1993c.  Fixation  of  compressed  wood  

    using  melamine-‐formaldehyde  resin.  Wood  and  Fiber  Sci.  25  (4):  404-‐410.    

    Ito,   Y.,   Tanahashi,   M.,   Shigematsu,   M.,   Shinoda,   Y.   and   Otha,   C.   1998.   Compressive-‐

    molding   of   wood   by   high-‐pressure   steam-‐treatment:   Part   1.   Development   of  

    compressively  molded  squares  from  thinnings.  Holzforschung  52:  211-‐216.  

    Kollmann,  F.  1936.  Technologie  des  Holzes.  Springer-‐Verlag,  Berlin.  

    Morsing,   N.   2000.   Densification   of   wood:   The   influence   of   hygrothermal   treatment   on  

    compression   of   beech   perpendicular   to   the   grain.   Dept.   Structural   Engineering   and  

    Materials,  Technical  University  of  Denmark,  Series  R,  No.  79.,  Lyngby,  Denmark.  

    Navi,  P.,  Huguenin,  P.,  Girardet,  F.  1997.  Development  of   synthetic-‐free  plastified  wood  

    by  thermohygromechanical  treatment.  In:  Proc.  The  Use  of  Recycled  Wood  and  Paper  

    in  Building  Applications.  For.  Prod.  Soc.  Proc.  No.  7286,  Madison,  Wisc.  P.  168-‐171.  

    Seborg,  R.M.,   Stamm,  A.J.  1941.  The  compression  of  wood.  US  For.  Prod.   Lab.  Rep.  No.  

    R1258,  Madison,  Wisc.  USA.    

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    15    

    Tomme,   F-‐P.,   Girardet,   F.,   Gfeller,   B.,   Navi,   P.   1998.   Densified   wood:   an   innovative  

    product   with   highly   enhanced   characteristics.   In:   Proc.   World   Conf.   on   Timber  

    Engineering,  Eds.  Natterer,  J.,  Sandoz,  J-‐L.,  Swiss  Fed.  Inst.  Tech.,  August  17-‐20,  1998.  

     

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    16    

    Keynote  paper/presentation  

    Characterization of laser modified wood surfaces for resin-

    free adhesion

    Scott  Renneckar1,  W.  Travis  Church2,  Jeffrey  Dolan1,  Zhiyuan  Lin1,  Charles  E.  Frazier1  

    1  Department  of  Sustainable  Biomaterials,  230  Cheatham  Hall,  Virginia  Tech,  Blacksburg,    

    VA  24060,  USA,  [email protected]  

    2  5919  New  Albany  Rd  W,  New  Albany,  OH  43054,  USA  

    ABSTRACT  

    Laser   irradiation  of  wood   is  a  new  method  of  bonding   two  wood  substrates.   Irradiating  

    the   surface   of   wood   with   laser   light,   within   an   optimal   set   of   parameters,   causes   the  

    wood   surface   to   change   and   subsequently   undergo   bonding   when   hot-‐pressed.   Light  

    microscopy  and  scanning  electron  microscopy  were  utilized  for  surface  topology  analysis.    

    Dependent   upon   the   amount   of   energy   density,   laser   modification   created   a   grooved  

    surface   or   a   flat   surface.   Chemical   analysis   of   the   residue   after   laser-‐modification   was  

    conducted   and   the   polysaccharide   and   Klason   lignin   content   of   the   extracted   products  

    were   evaluated   using   ion   chromatography.   Additionally,   chemical   analysis   of   the  wood  

    surface   was   performed   using   FTIR   spectroscopy.   The   surface   of   wood   after   laser   light  

    exposure  was  decorated  with  a  “glass-‐like”   layer,  which  consists  of  modified   lignin  with  

    some   polysaccharide   degradation   products,   and   evidence   of   cellulose   melting.  

    Subsequently,  wood  samples  with  modified  surfaces  were  hot-‐pressed  together  creating  

    a   wood   composite.   Screening   of   multiple   factors   that   would   contribute   to   surface  

    modification   and   adhesion   was   performed   utilizing   mechanical   testing.     Laser   light  

    modified  wood  composites  were  tested  in  shear  for  mechanical  strength,  using  a  design  

    of  an  experiment  (DOE)  approach  to  optimize  hot-‐pressing  parameters.    It  was  found  via  

    initial  screening  and  DOE  experiments  that   laser  power  density  as  well  as  and  hot  press  

    pressure   were   significant   factors   to   optimize   bonding.   Laser-‐modified   3-‐ply   veneer  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    17    

    samples   had   values   that   were   comparable   to   control   samples   created   using   phenol  

    formaldehyde  resins.  The  data  suggests  that  laser-‐activated  bonding  of  wood  can  yield  a  

    wood  composite  requiring  no   liquid  adhesives  as  the  wood  itself  serves  the  dual  role  of  

    adhesive  and  substrate.    

    Keywords:   CO2  laser,  wood  surface  chemistry,  plywood,  auto-‐adhesion  

    1 INTRODUCTION  

    Wood   surfaces   are   complex   arising   from   the   destruction   of   the   cell   wall   material,  

    migration  of  water  and  extractive  components  to  the  surface,  and  the  contamination  of  

    the  surface  with  dust  and  other  air-‐borne  materials.    Additionally,  heat  is  generated  at  the  

    surface   during   cutting   operations   and   subsequent   elevated   temperatures   during   drying  

    can  alter   the  type  and  quantity  of   functional  groups  at   the  surface   (Sernek  et  al.  2005).  

    Moreover,   wood   surfaces   can   be   purposefully   modified   through   exposure   to   different  

    forms  of  energy.  One  of  the  oldest  and  classic  examples  is  the  flame  treatment  of  wood  

    for  storage  of  food  and  drink.    Due  to  the  high  quantity  of  energy  transferred,  in  a  short  

    period   of   time,   lasers   are   able   to   modify   wood   differently   than   other   modification  

    methods   with   slower   heat   rates.   Laser   light   interaction   with   wood   results   in   charring,  

    ablation,   and  melting,   depending   on   a  multitude   of   variables   that   are   related   to  wood  

    properties  and  laser  parameters.  Laser   light  affects  the  irradiated  area  and  the  resulting  

    laser   modification   is   described   in   3   levels,   which   are   cumulatively   known   as   the   heat  

    affected   zone,   or   HAZ.   This   zone   can   be   up   to   100  microns   thick,   depending   on  wood  

    variables,   laser  variables,  and  their   interaction.  Parameswaran  (1982)  described  the  first  

    level  as  a  black,  smooth  laser  cut  surface  that  is  approximately  25  microns  thick.  Softening  

    and  melting  as  a   result  of   laser   light  and  wood   interaction  suggests   the  process   is   such  

    that   kinetics   of   softening   and  melting   can   surpass   the   kinetics   of   thermal   degradation  

    (Schroeter  and  Felix  2005).    

    Past   research   indicated   that   the   laser   modification   of   wood   affects   the   lignin   and  

    hemicellulose   components   to   the   greatest   extent,   while   effecting   cellulose   to   a   lesser  

    degree   (Kubovsky   2009).   It   was   found   that   laser   modification   primarily   caused  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    18    

    degradation  of  hemicellulose  and   lignin   (Kubovsky  2009).    Specifically   the  hemicellulose  

    underwent   deacetylation,   while   bond   cleavage   occurred   in   lignin,   specifically   the   aryl-‐

    alkyl  ether  bonds  in  lignin  were  broken.  This  bond  cleavage  induced  further  condensation  

    reactions.  Other  research  indicated  that  the  modification  of  components  was  preferential  

    towards   reducing   the  methoxy   side   groups   of   lignin   (Walinder  et   al.   2009).     Additional  

    studies  have  investigated  laser  modification  specific  to  cellulose.  The  studies  were  based  

    on   the  concept  of  applying  enough  energy,   induced  by  a   combination  of   frictional  heat  

    and  via   laser,   in  order   to  chemically  and/or  physically   change  viscose  grade  wood  pulp,  

    which  is  noted  to  have  a  high  α-‐cellulose  content,  into  clear  films.  A  calculation  was  made  

    for  the  amount  of  energy  required  to  “weaken  and  unlock”  the  intermolecular  hydrogen  

    bonds  in  cellulose.  It  was  found  that  this  energy  would  need  to  be  20kJ/mol,  or  3.3*10-‐20  J  

    per  bond,  which  is  equivalent  to  1  photon  with  a  wavelength  of  6  microns  (Schroeter  and  

    Felix  2005).    Although   the   IR  spectra   indicated   little  change,  qualitatively   it  was  evident  

    that   the   material   changed   from   a   fibrous   opaque   structure   to   a   transparent   smooth  

    structure.  With  these  results  the  researchers  concluded  they  were  able  to  melt  cellulose.  

    Previous   researchers  have  observed   the  “melting”  of   lignocellulosic  materials  with   laser  

    modification,  some  suggesting   lasers  melting  only  related  to  a  specific  component,  with  

    other  suggesting  that  all  wood  components  can  undergo  thermal  softening  and  melting.    

    In  the  current  research,  we  examine  the  surface  of  laser  modified  wood  with  a  variety  of  

    chemical   analysis   techniques   to   understand   chemical   changes   induced   by   the   laser  

    modification   as  well   as   investigate   the   parameters   that   lead   to   strong   bondlines  when  

    two  laser  modified  surfaces  are  hot  pressed  together.    

    2 MATERIALS  AND  METHODS    

    2.1 MATERIALS  

    3.2  mm  thick  “Grade  A”  Yellow-‐poplar  (Liriodendron  tulipifera)  and  southern  yellow  pine  

    (Pinus   spp.)   rotary-‐peeled   veneer   were   obtained   from   a   southeastern   US   laminated  

    veneer  mill.  The  as-‐received  60x60cm  samples  were  conditioned  to  12%  moisture  content  

    in  a  walk-‐in  environmental  humidity  controlled  room.    

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    19    

    2.2 METHODS    

    Wood  veneer  samples  were  modified  utilizing  a  ULS-‐V460  60W  carbon  dioxide  laser  with  

    high  power  density  focusing  optics,  resulting  a  circular  spot  size  with  a  minimum  diameter  

    of  approximately  50  μm.  Laser  wattages  of  3  to  60W  were  utilized,  with  the  laser  moving  

    at  a  speed  of  0.1  m/s  to  0.5  m/s,  at  40,000  pulses  per  meter.  Specific  parameters  utilized  

    in   the   ULS   print   driver   included   a  maximum   image   density   of   6,   tuning   of   zero,   while  

    utilizing   vector   mode.   The   trajectory   of   the   laser   was   designed   in   AutoCAD,   using   the  

    smallest  resolution  usable  by  the  laser  between  lines,  0.002  in  (50.4  μm)  to  irradiate  the  

    surface.  Laser  modified  samples  were  placed  in  contact  matching  their  irradiated  surfaces  

    and  subsequently  hot  pressed  together  utilizing  a  MP2000  mini  hot  press  at  200 °C  (Fig.  

    1).  The   time  between   laser  modification  and  hot  pressing   ranged   from  5  min   to  weeks;  

    with   no   detectable   difference   in   bond   strength.     Pulse   Amperometric   Detection   Ionic  

    chromatography   (IC)   was   used   for   sugar   analysis   of   the   laser   modified   poplar   versus  

    remaining  bulk  wood.  

     Figure  1:     Process  segments  for  laser  modified  wood  bonding;    (left)  Autocad  file  for  read/write  laser  

    modification  of  wood  surface,  (center)  laser  modification  of  southern  yellow  pine  veneer,  

    (right)  hotpress  system  used  to  make  test  specimens.  

    3 RESULTS  AND  DISCUSSION  

    In  Fig.  2,  a  3-‐D  light  microscopy  image  indicates  a  distinct  difference  of  the  laser-‐modified  

    wood   surface.     The   samples  appear   to  have  a   glossy,   reflective   surface  with  dark   spots  

    that  speckle  the  surface.    The  sides  of  the  sample  reveal  that  laser  modification  is  limited  

    to  the  surface  of  the  sample.    For  softwoods,  measurements  of  the  heat  affected  zones  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    20    

    show  earlywood  tracheids  are  modified  on  average  of  19.7  micrometers   in  depth,  while  

    latewood  tracheids  are  modified  on  average  of  8.1  micrometers.      Fiber  tracheids  and  ray  

    parenchyma  have  approximately  11  micrometers  of  modification.    Others  have  reported  

    that   the   density   variations   in   the  wood   greatly   impact   depth   of   treatment,   as   cell  wall  

    thickness  directly  impacts  the  laser  ablation  process.      

     Figure  2:     3-‐D  light  microscopy  image  of  laser  modified  yellow-‐poplar.  

    The  spacing  of  the  line  and  the  focus  of  the  laser  spot  size  were  controlled  to  manipulate  

    surface  geometries  from  a  flat  surface  to  a  highly  grooved  surface.    As  the  in-‐focus  laser  

    spot   size  was   smaller   than   the   resolution   of   the   laser's  motion   system,   ridges   develop  

    between  laser  lines  during  laser  modification  (Figure  3a).    In  addition  the  Gaussian  shape  

    of  the  power  of  the  laser  beam  creates  a  spot  size  with  additional  energy  in  the  center.    

    As  mechanical  interlock  of  ridges  may  promote  adhesion,  the  presence  of  the  ridges  was  

    thought  to  have  a  substantial  positive  effect  on  the  bonding  (Fig.  3b).  However,  for  laser  

    bonding  to  occur,  mechanical  interlock  “micro-‐finger  joints”,  was  not  required  (Fig.  3c,d).    

    Surprisingly,   smooth   surfaces   showed   higher   compressive   shear   strengths   than   the  

    grooved  samples  (6.2  MPa  vs.  3.5  MPa,  respectively).    Highest  shear  strengths  were  found  

    for  samples  with  the  most  pressure  during  bonding  (2  MPa).    This  data  suggests  that  the  

    laser-‐modified   surfaces   are   limited   by   their   inability   to   bridge   differences   in   surface  

    roughness.      When  appropriate  conditions  were  used  for  bonding,  3-‐ply  specimens  had  a  

    bending  modulus  between  7  and  10  GPa  and  bending  strength  60  to  80  MPa.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    21    

     Figure  3:     (a)  SEM  image  of   laser  modified  wood  with  high  concentrated  energy  causing  grooves   in  

    surface;  (b)  image  of  bondline  of  two  specimens  from  (a);  (c)  SEM  image  of  laser  modified  

    wood  with   low  concentrated  energy  resulting   in  relative  flat  surface  topography;  and  (d)  

    image  of  bondline  of  two  specimens  from  (b)  

    Surface  material   of   laser   treated  wood  was   isolated   through   extraction.     A   number   of  

    solvents  were  evaluated  for  their  ability  to  refresh  the  surface,  removing  all  residues  from  

    the   surface.     Solvents   tested   were   the   following:   alcohols   like   methanol   and   ethanol;  

    acetone;  selective  lignin  solvents  like  aqueous  dioxane;  dimethylsulfoxide  (DMSO),  0.1  M  

    NaOH,   and   water.   Dimethylsulfoxide   was   successful   in   removing   the   primary   heat  

    affected   zone   of   the   surface.     The   DMSO   extract   was   evaluated   by   precipitating   the  

    polymeric   materials   with   acidic   ethanol,   followed   by   a   two-‐step   acid   hydrolysis   for  

    composition  analysis  of  these  materials.    This  data  provided  the  monomeric  carbohydrate  

    component   percentage   related   to   the   wood   polysaccharides   extracted   as   well   as   the  

    Klason   lignin   content.       It  was   found   that   the   cellulose   content   increased   from  47.7   to  

    61.9%  and  the  lignin  content  of  the  surface  increased  from  21.1  to  27.9%,  and  the  xylan  

    content   was   greatly   reduced   to   less   than   4%.   Analysis   of   the   water   extracted   surface  

    material  revealed  a   large  amount  of  xylose,  as  well  as  monomeric  degradation  products  

    such   as   hydroxymethyl-‐furfural,   levoglucosan,   xylitol   and   sorbitol.     While   a   number   of  

    possible  compounds  were  found  to  be  present  that  could  be  reactive,  no  specific  reactive  

    chemistry   was   detected   suggesting   bonding   occurred   because   of   intimate   contact   of  

    surfaces  during  hot-‐pressing.      

    a   b  

    c   d  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    22    

    4 CONCLUSIONS  

    CO2   laser   modification   of   wood   ablates   the   surface   of   wood   leaving   a   residue   on   the  

    wood  surface.    Dependent  upon  the   laser  energy  density,   the  surface  topology  changes  

    from  a  grooved  surface  to  a  relatively   flat  surface.    The  residue  remaining  on  the  wood  

    surface  is  composed  of  the  native  wood  polymers  and  degradation  products.    This  residue  

    alone  provides  adequate  adhesion  to  form  composite  materials  when  two  specimens  are  

    bonded  together  under  pressure  and  heat.      

    5 REFERENCES  

    Buschbeck  L.,  Kehr  E.,  Jensen  U.  1961a.  Untersuchungen  über  die  Eignung  verschiedener  

    Holzarten  und  Sortimente  zur  Herstellung  von  Spanplatten  –  1.  Mitteilung:  Rotbuche  

    und  Kiefer.  Holztechnologie,  2,  2:  99–110  

    Kubovsky,   I.,   2009.   FT-‐IR   Study   of  Maple  Wood   Changes   due   to   CO2   Laser   Irradiation.  

    Cellulose  Chemistry  and  Technology,  43(7-‐8):  p.  235-‐40.    

    Parameswaran,  N.,  1982.  Feinstrukturelle  Veränderungen  an  durch  laserstrahl  getrennten  

    Schnittflächen  von  Holz  und  Holzwerkstoffen.  European  Journal  of  Wood  and  Wood  

    Products,  40(11):  p.  421-‐428.    

    Schroeter,  J.  and  F.  Felix,  2005.  Melting  cellulose.  Cellulose,  12(2):  p.  159-‐165.    

    Sernek,   M.,   Kamke,   F.A.   and   Glasser,   W.G.,   2004.   Comparative   analysis   of   inactivated  

    wood  surfaces.  Holzforschung,  58:22-‐31  

    Walinder,  M.,  et  al.,  2009.Micromorphological  studies  of  modified  wood  using  a  surface  

    preparation  technique  based  on  ultraviolet  laser  ablation.  Wood  Material  Science  and  

    Engineering,  4(1):  p.  46  -‐  51.  

       

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    23    

    Emissions of thermally modified timber products

    Lothar  Clauder1,  Maria  Rådemar2,  Lars  Rosell2,  Marcus  Vestergren2,  Alexander  Pfriem1  

    1  Eberswalde  University  for  Sustainable  Development,  Friedrich-‐Ebert-‐Straße  28,  16225  

    Eberswalde,  Germany,  [email protected]  

    2  SP  Technical  Research  Institute  of  Sweden,  Box  857,  SE-‐501  15  Borås,  Sweden,  

    [email protected]  

    ABSTRACT  

    In  this  study  the  applicability  of  wood  in  the  museum  environment  was  investigated.  The  

    applied  method  focused  on  an  appropriate  selection  of  materials  and  adequate  control  of  

    their  noxious  compounds  as  keys  to  achieve  compatibility  between  display  materials  and  

    artworks.   Therefore   specimens   of   fresh-‐sawn   Fir   (Abies   alba,   Mill.)   and   Alder   (Alnus  

    glutinosa,   (L.)  Gaertn.)  were  pre-‐treated  with   a  buffer-‐solution  and  heat-‐treated  at   low  

    temperatures.  The  Field  and  Laboratory  Emission  Cell  (FLEC)  were  applied  for  measuring  

    the  volatile  organic  compounds  (VOC)  and  the  formaldehyde  (FA)  emissions  from  wood.  

    The  emissions  were  characterised  by  using  gas  chromatography  (GC)  in  combination  with  

    mass-‐spectra   (MS)   and   flame   ionization   detection   (FID),   ion   chromatography   (IC)   and  

    high-‐performance  liquid  chromatography  (HPLC).  Compared  to  samples  of  green  Fir,  the  

    formaldehyde   emissions   increased   in   the   kiln-‐dried   samples.   However   these   emissions  

    were  decreased   in   the   impregnated  and   thermally  modified  samples.  Thermally   treated  

    and   dried   variants   of   Alder   samples   showed   low   amounts   of   VOC,   in   particular   due   to  

    aldehydes  (>C2).  The  low  amount  of  acidity  and  decreased  formaldehyde  formation  in  the  

    Alder   samples   increased   the   positive   trend.   Concerning   the   detection   limits   for  

    substances   with   high   contamination   potential   for   individual   display   case   construction  

    materials,   this   study  gives  a   first  hint  on  how   the  VOC  emissions  of   thermally  modified  

    timber  could  be  minimized  by  using  a  buffer  solution  before  the  heat  treatment.  

    Keywords:   thermally  modified   timber,   gas   chromatography,   high-‐performance   liquid  

    chromatography,  ion  chromatography,  volatile  organic  compounds.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    24    

    1 INTRODUCTION  

    Wood   emits   volatile   organic   compounds   (VOC).   Thus,   the   applicability   of   wood   in   the  

    museum  environment,  e.g.  as  material  for  the  construction  of  display  cabinets,  is  almost  

    entirely   restricted   due   to   the   required   controlled   climate   and   air   purity,   which   is   very  

    different   from   normal   indoor   air,   e.g.   in   dwellings,   offices,   schools   etc.   The   desire   to  

    preserve   exhibits,   constituted   by   all   imaginable  materials,   from   deterioration   allows   in  

    principle  only  low  levels  of  air  pollutants  with  possible  detrimental  effects  (Englund  2010).  

    The   purpose   of   this   study  was   to   develop   and   test   a   suitable  method   to  minimize   the  

    emissions.   Schäfer   and   Roffael   (2000)   proposed   reaction   mechanisms   of   FA   formation  

    from  wood  and  demonstrated  an  increase  of  FA  emission  at  elevated  temperatures  and  

    prolonged  heating   times  during  panel  production.  Especially  during   the  pressing  step  at  

    elevated  temperatures  increased  FA  and  VOC  emissions  were  detected  in  the  absence  of  

    any   resin   (Carlson   et   al.   1995).   Even   at   temperatures   below   100°C,   as   during   the   kiln  

    drying   of   the   wood,   the   hydrolysis   of   cell   wall   components   cellulose,   polyose  

    (hemicellulose)  and   lignin   leads  to  formation  of   furfural,   formaldehyde  and  very  volatile  

    acids   (VVOC,   e.g.   formic   acid).   The   approach  was   to   reduce   the   emissions   of   thermally  

    modified  timber  products,  based  on  impregnation  with  a  sodium-‐boric-‐buffer-‐solution.  

    2 EXPERIMENTAL  

    Alder  (Alnus  glutinosa,  (L.)  Gaertn.),  which  is  low  emitting,  and  Fir  (Abies  alba,  Mill.)  were  

    selected.  Sample  preparation  was  performed  at  the  Eberswalde  University  for  Sustainable  

    Development.   The   fresh-‐sawn   specimens   (210×210×20   mm³)   were   taken   out   of   two  

    stems,   each   approximately   60   years   old,   harvested   in   Northeast   Germany.   The  

    experimental  test  set-‐up  consisted  of  2  samples  for  each  variant  of  treatment  (Table  1).  

       

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    25    

    Table  1:     Experimental  test  set-‐up  

    Specimen  [n]   Treatment  

    2   untreated  

    2   kiln  dried  

    2   modified  

    2   impregnated  kiln  dried  

    2   impregnated  modified  

    3 METHODS  

    3.1 SET  UP  FOR  pH  VALUE  MEASUREMENTS  

    In  general,  wood  species  range  in  pH  from  3.0  to  5.5  (Stamm  1964).  A  pH  range  of  4.00  to  

    5.86  for  hardwoods,  e.g.  5.52  for  Alder  and  4.02  to  5.82  for  softwoods,  e.g.  4.02  for  Fir  

    was   found   (Johns  1980).  The   impregnation  with   the  buffer  solution  was  performed   in  a  

    Pressure   Impregnation   plant.   After   impregnation,   small   samples   were   dissolved   in  

    distilled   water   then   pH-‐value  measurements   were   carried   out   with   a  WTW   pH  meter,  

    Model  inoLab  by  using  an  electrode  to  measure  the  extracts.  To  determine  the  potential  

    of   the  buffer   solution  with   a  pH-‐value  of   9.4,   the   following  equilibrium  equation   (Eq.1)  

    was  used,  e.g.  to  calculate  the  amount  of  protonated  acetic  acid  molecules  inside  the  pre-‐

    treated  wood.  

    pH  =  pKa  +  lg  [b]/  [a]   (Eq.  1)  

    [b]  =  base  (e.g.  sodium  acetate);  [a]  =  acid  (e.g.  acetic  acid);  pKa  =  negative  logarithm  of  the  equilibrium  constant  (e.g.  acetic  acid  &  sodium  acetate)  

    3.2 SET  UP  FOR  F IELD  AND  LABORATORY  EMISSION  CELL  

    A  variety  of   test  methods   for  determining  FA  emissions   from  wood  and  wood  products  

    have  evolved  over  time.  As  reference  methods  the  American  National  Standards  (ANSI),  

    e.g.   for   particleboard   (A.208.1   2009),   as   the   emission   standards   of   the   California   Air  

    Resources  Board  (CARB  2008)  and  the  chamber  method  according  to  DIN  EN  717-‐1  (2004)  

    specify   large   chamber   tests.   The   large   chamber   test   is   expensive,   time   consuming   and  

    needs   a   large   amount   of   samples.   Therefore   it   is   impractical   for   quality   assurance   in  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    26    

    commercial   production   (Birkeland   et   al.   2010).   Due   to   reliable   correlation   to   these  

    reference   methods,   derived   and   approved   secondary   methods,   e.g.   the   perforator  

    method   (EN   120   1993),   gas   analysis   method   (EN   717-‐2   1994)   and   desiccator-‐test,   as  

    described  in  ASTM  D  5582-‐00  (2006)  have  been  established.  For  this  reason  in  this  study  

    the  measurements  of  the  emissions  from  wood  were  performed  according  to  ISO  16000-‐

    10  (2006)  with  a  Field  and  Laboratory  Emission  Cell  (FLEC),  which  provides  a  simulation  of  

    realistic   indoor  air   conditions  with   respect   to   temperature  and   relative  humidity   (Fig.   1  

    and  2).  In  contrast  to  real  air  conditions,  the  air  exchange  rate  in  the  FLEC  is  higher  (171  

    times/hour).   This   emission   cell   is   designed   to   measure   area   specific   emission   rates   of  

    general  VOCs  and  separately  the  lowest  aldehydes,  formaldehydes  and  acetaldehyde,  as  

    well  as  the  lowest  carboxylic  acids,  formic  acid  and  acetic  acid.  

    1  air  inlet  

    2  air  outlet  

    3  channel  

    4  sealing  material  

    5  slit  

    1  Specimen  is  located  in  the  subunit  (stainless  steel  cylinder)  

    2  Sorbent  tubes  (e.g.  stainless  steel  tubes  filled  with  Tenax  TA®)

    Figure  1:Schematic  of  Field  and  Laboratory  Emission  Cell  (FELC)  (EN  ISO  16000-‐10  Test  cell  method)  

    Figure  2:  Application  of  the  Field  and  Laboratory  Emission  Cell  (FELC)  combined  with  a  subunit  containing  the  specimen  

    Before  each  measurement  on  the  specimen,  a  background  air  sample  of  the  test  chamber  

    was   performed,   to   quantify   any   contribution   of   organic   compounds   from   the   clean   air  

    system  and   the  empty   cell.   The   samples  were  prepared  according   to   EN   ISO  16000-‐11,  

    formatted  (Ø14.8  cm)  and  stored  in  a  conditioning  room  (23  ±  2°C  and  50  ±  5%).  Prior  to  

    the  tests   fresh  surfaces  were  planed  and  the  edges  were  sealed  with  an  alloy  tape.  The  

    stainless  steel  cell  and  subunit  allowed  a  controlled  climate  at  23  ±  1°C  and  50  ±  3%  RH.  

    1

    2

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    27    

    The  exposed  wood  surface  of  0.0177  m²  was  large  relative  to  the  cell  volume  of  35  ml  and  

    ensured  a  high   loading   factor  of  506  m²/m³  for  sufficient  analytical  sensitivity.  The   inlet  

    airflow  was   set   to   100  mL/min,   which   resulted   in   an   inlet   area   specific   airflow   rate   of  

    0.339   [m3/   (h*m2)]   through   the   cell.   Standard   flow   control   pumps   supplied   an   outlet  

    airflow  of  80  mL/min  for  the  duration  of  960  min  through  an  activated  silica  gel  tube  (SKC,  

    260/520  mg  sorbent)  for  sampling  acids.  Aldehydes  were  sampled  with  the  same  air  flow,  

    but   only   for   the   duration   of   120   min   in   2.4-‐DNPH   adsorption   cartridges.   VOCs   were  

    collected  with  40  mL/  min  for  80  min  in  Tenax®  adsorbent  tubes.  

    3.3 SET  UP  FOR  DIVERSE  GAS  ANALYSIS  

    The  Tenax®  samples  (200  mg)  were  desorbed  (UltrA/  Unity,  Markes  Inc.)  and  detections  

    were  carried  out  by  mass  spectrometry,  using  GC/  MS,  7890A  GC  and  5975C  MS  (Agilent  

    Technologies)   and   library   spectra.   Low   aldehydes   were   identified   by   high-‐performance  

    liquid  chromatography  (HPLC;  EN  ISO  16000-‐3).  The  DNPH  cartridges  were  extracted  with  

    acetonitrile   and   analysed   via   HPLC   using   a   variable   wavelength   detector   (HPLC/   1100  

    System,  Agilent  Technologies).  The  aldehyde  content  was  automatically   calculated   from  

    the   obtained   peak   area.   Low   acids   separations   were   performed   with   an   ion  

    chromatography   system  with   a   conductivity  detector  with   ion   suppression  using  an   ion  

    exclusion   chromatography   column   (Strömberg   2013).   The   measured   concentration   of  

    volatile  compounds  (Eq.  2)   in  the  outlet  air  [µg/  m³]  was  converted  (Eq.  3)   into  the  area  

    specific  emission  rate  [µg/  m²  *  h].  

    Concentration  [µg/m3]  =  Peak  area  [ae]  /  (RF  [ae/ng]  x  sample  vol.  [L])  /  RRF     (Eq.  2)  

    Area  specific  emission  rate  [µg/m2h]  =  Concentration  [µg/m3]  x  0.339     (Eq.  3)  

    RF  =     Toluene  equivalent  (value  of  control  sample  from  internal  calibration  setup  of  SP)  

    RRF  =     Relative  Response  Factor  (relative  to  toluene)  expresses  rate  in  compound  specific  amount  

    Area  specific  air  flow  rate  (0.339)  

    4 RESULTS  AND  DISCUSSION  

    The   emissions   obtained   from   the   micro-‐chamber   measurements   were   described  

    separately   for   each   species   on   the   first   and   the   third   day   (Fig.3).   Low   aldehydes,   i.e.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    28    

    formaldehyde  (FA)  and  acetaldehyde  (AA)  were  detected   in  the  untreated  specimens  of  

    both  species.  Concerning  the  untreated,  green  samples  of  both  species,  hydrolysed  acids  

    did  not  emit   in   greater   amounts,  due   to   the  moisture   content   (>70%)  of   the  untreated  

    samples.  In  addition  the  formation  of  formaldehyde  was  not  catalysed  through  an  acetic  

    environment.  The  content  of  terpenes  and  aldehydes,  and  thus  the  sum  of  VOCs  (sum  of  

    aldehydes  >  C2  and  terpenes)  for  the  impregnated  and  thermally  modified  samples,  was  

    far  greater  than  that  of  the  untreated  samples.  However,  these  compounds  possess  very  

    little  corrosivity  towards  materials  like  textiles,  paper  and  metals.  

    Figure  3:     Means  of  area  specific  emission  rates  of  specimens  (Fir  and  Alder,  n  =  2  /batch)

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    29    

    Contrary   to   expectation,   identified   compounds   were   refound   after   the   thermal  

    modification  and  drying  process.  However,   all   variants  of   Fir   samples  did  not   show  any  

    low   acids,   i.e.   acetic   and   formic   acid,   neither   at   the   first   nor   at   the   third   day.  

    Unfortunately   the   results   obtained   from   the   Fir   samples   were   not   likely   to   give  

    information  about  the  influence  of  the  different  modification  parameters  on  the  chemical  

    compounds.   In  contrast   to   the  Fir   samples,   in   the   impregnated,   thermally  modified  and  

    kiln-‐dried  specimens  of  Alder  no  FA  or  AA  values  were  detected.  Due  to  aldehydes  (>  C2),  

    low  amounts  of  VOC  were  detected   in  all   thermally   treated  and  dried  variants  of  Alder  

    samples.  As  far  as  the  detection   limits  for  substances  with  high  contamination  potential  

    for   individual   display   case   construction   materials   were   concerned,   the   low   amount   of  

    acidity   and   yet   a   missed   formation   of   formaldehyde   in   the   Alder   samples   were   very  

    positive  results.  

    5 CONCLUSIONS  

    The   study   considered   direct   emissions   as   well   as   secondary   products,   concerning   the  

    formation   of   acids   and   aldehydes,   caused   by   thermo-‐hydrolysis.   It   was   found   that   the  

    FLEC  is  an  appropriate  instrumentation  for  the  performance  of  the  investigation  of  small-‐

    sized   samples,   with   a   respectively   low   emission   concentration.   Similarly,   the   three  

    different  methods  of  analysis  (GC/MS,  IC  and  HPLC)  were  essential  for  the  investigations.  

    Reasonable   adjustments   were   achieved   in   applying   the   appropriate  method.  With   this  

    advanced  modification  process,  especially  the  suppressed  formation  of  formaldehyde  and  

    the  minimized  amount  of  acids,  the  applicability  of  thermally  modified  timber  products  in  

    sensitive  environments,  e.g.  health  care  institutions  or  museums,  could  be  achieved.  

    6 REFERENCES  

    Birkeland  M.J.,  Lorenz  L.,  Wescott  J.M.,  Frihart  C.R.  2010:  Determination  of  native  (wood  

    derived)  formaldehyde  by  the  desiccator  method  in  particelboards  generated  during  

    panel  production.  Holzforschung,  Vol.  64,pp.  429-‐433,  Walter  de  Gruyter,  Berlin,  New  

    York.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    30    

    Carlson  F.E.,  Phillips  E.K.,  Tenhaeff  S.C.,  Detlefsen  W.D.  1995:  Study  of  formaldehyde  and  

    other   organic   emissions   from   pressing   of   laboratory   oriented   strandboard.   Forest  

    Products  Journal  J.45,  71-‐77.  

    Englund   F.   2010:   Neutral   materials   in   the   museum   environment:   Emissions   from  

    materials,  SP  Technical  Research  Institute  of  Sweden,  Stockholm.  

    Roffael   E.,   Hameed   M.,   Kraft   R.   2007:   Bildung   von   Formaldehyd,   Furfural   und  

    Ameisensäure   bei   der   thermohydrolytischen   Behandlung   von   einigen   monomeren  

    Zuckern   (Xylose,   Arabinose   und   Ga-‐lactose),   Beitrag   zu   Entstehung   von   flüchtigen  

    organischen   Verbindungen   (VOC)   beim   Holzaufschluss   für   die   MDF-‐Herstellung,  

    Holztechnologie,  Bd.  48,  Nr.  2,  S.  15-‐18.  

    Schäfer  M.,   Roffael   E.   2000:   On   the   formaldehyde   release   of   wood.   Holz   als   Roh-‐   und  

    Werkstoff  58,  S.  321-‐322.  

    Stamm  A.J.  1964:  Wood  and  cellulose  science.  Ronald  Press,  New  York.  

    Strömberg   N.   2013:   SP  Method   for   carboxylic   acids   in   air,   SP   Chemistry   and  Materials  

    Technology,  Borås,  Sweden.  

    ASTM  D  5582-‐00  2006:  Bestimmung  der  Formaldehydkonzentrationen  aus  Holzprodukten  

    mit  einem  Exsikkator,  Ausgabedatum:  2000,  reapproved:  2006,  Beuth,  Berlin.  

    CARB  2008:  California  Air  Resources  Board,  California  Environmental  Protection  Agency.  

    State  of  California,  USA.  

    DIN   EN   717-‐1   2004:   Holzwerkstoffe   -‐   Bestimmung   der   Formaldehydabgabe   -‐   Teil   1:  

    Formaldehydabgabe  nach  der  Prüfkammer-‐Methode,  Beuth,  Berlin.  

    DIN   EN   717-‐2   1994:   Holzwerkstoffe   -‐   Bestimmung   der   Formaldehydabgabe   -‐   Teil   2:  

    Formaldehydabgabe  nach  der  Gasanalyse-‐Methode,  Beuth,  Berlin.    

    EN   120   1993:   Holzwerkstoffe   -‐   Bestimmung   des   Formaldehydgehaltes   -‐  

    Extraktionsverfahren  (genannt  Perforatormethode),  Beuth,  Berlin.  

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    31    

    ISO  16000-‐10  2006:  Indoor  air  -‐-‐  Part  10:  Determination  of  the  emission  of  volatile  organic  

    compounds   from   building   products   and   furnishing   -‐   Emission   test   cell   method,   SIS  

    Förlag  AB,  118  80  Stockholm.  

       

  • Joint  COST  FP0904  &  FP1006  International  Workshop  in  Slovenia  on  Characterization  of  modified  wood  in  relation  to  wood  bonding  and  coating  performance  

     

    32    

    Application of FT-NIR for recognition of substances used for

    conservation of wooden parquets of 19th century manor

    houses located in South-Eastern Poland

    Anna  Rozanska1,  Anna  Sandak2  

    1  PhD  student,  Warsaw  University  of  Life  Sciences  (SGGW),  Nowoursynowska  166,  02-‐787  

    Warsaw,  Poland,  [email protected]  

    2  IVALSA  Tree  and  Timber  Institute,  via  Biasi  75,  38010  San  Michele  all’Adige  (TN),  Italy,  

    [email protected]  

    ABSTRACT  

    In  antique  palaces  and  manor  houses,  traditional  surface  finishing  techniques  were  used.  

    The   surfaces   of   antique   wooden   parquets   were   soaked   with   wax   or   with   oils.   Those  

    substances  preserve  wood  and  have  a  major   influence  on �