52
BK TP.HCM 2010 d c e Chapter 1 INTERGRATED-CIRCUIT LOGIC FAMILIES Faculty of Computer Science and Engineering Department of Computer Engineering  ©2010, CE Department

Chapter1_Integrated-Circuit Logic Family

Embed Size (px)

Citation preview

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 1/52

BKTP.HCM

2010

dc e

Chapter 1INTERGRATED-CIRCUIT

LOGIC FAMILIES

Faculty of Computer Science and Engineering

Department of Computer Engineering

 ©2010, CE Department

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 2/52

2010

dc e

Outline

• Digital IC Terminology• TTL Logic Family

• MOS Technology• Open-Collector/Open-Drain Ouputs

• Tristate (Three-State) Logic Outputs

• IC Interfacing

 ©2010, CE Department 2

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 3/52

2010

dc e

3 ©2010, CE Department

Digital IC Terminology

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 4/52

2010

dc e

4 ©2010, CE Department

Current and Voltage Parameters

HIGH logic:1 ; LOW logic :0 V IH(min) – High Level Input Voltage

V IL(max) – Low Level Input Voltage V OH(min) – High Level Output Voltage

V OL(max) – Low Level Output Voltage

 I IH – High Level Input Current

 I IL – Low Level Input Current

 I OH – High Level Output Current

 I OL – Low Level Output Current

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 5/52

2010

dc e

5 ©2010, CE Department

Fan-out

• Loading factor

• The maximum number of logic inputs that an

oputput can drive reliably.

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 6/52

2010

dc e

6 ©2010, CE Department

Propagation Delays

t PLH: Delay time in going from 0 Æ 1 (LOWÆ HIGH)

t PHL: Delay time in going from 1 Æ 0 (HIGHÆ LOW)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 7/52

2010

dc e

7 ©2010, CE Department

Power Requirement

• TTL devices: VCC

• MOS devices: VDD

• I CCH : all outputs are HIGH• I CCL: all outputs are LOW

 I CC (avg)=( I CCH + I CCL)/2

P D(avg)= I cc(avg).V cc

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 8/52

2010

dc e

8 ©2010, CE Department

Speed-Power Product

• Digital IC families desire: – Higher speed (shorter gate propagation delay) : S 

 – Lower power dissipation: P – Measuring and comparing the overall performance of

an IC.

Speed-power product = S * P

d

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 9/52

2010

dc e

9 ©2010, CE Department

Noise Immunity

– high-state noise marginV NH

= V OH

(min) – V IH

(min)

– low-state noise margin

V NL = V IL (max) – V OL(max)

d

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 10/52

2010

dc e

10 ©2010, CE Department

Current-Sourcing – Current-Sinking Logic

d

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 11/52

2010

dc e

11 ©2010, CE Department

IC Packages

• DIP (dual-in-line package) – Lead pitch: spacing between pins (100 mils)

• Surface-mount

dc e

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 12/52

2010

dc e

12 ©2010, CE Department

TTL Logic Family

• TTL inputs: multiple-emitter 

• TTL outputs: totem-pole

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 13/52

dc e

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 14/52

2010

dc e

14 ©2010, CE Department

TTL NAND Gate

• HIGH State

dc e

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 15/52

2010

dc e

15 ©2010, CE Department

TTL NAND Gate

• Current-Sinking and Current Sourcing

dc e

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 16/52

2010

dc e

16 ©2010, CE Department

TTL NAND Gate

• Totem-Pole Output – Advantage

• Low power dissipation

• Fast rise-time

 – Disadvantage

• Large current spike during switching form LOW to HIGH

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 17/52

dc e

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 18/52

2010

dc e

18 ©2010, CE Department

TTL Series

• Standard TTL, 74• Schottky TTL, 74S

• Low-Power Schottky TTL, 74LS (LS-TTL)• Advanced Schottky TTL, 74AS (AS-TTL)

• Advanced Low-Power Schottky TTL, 74ALS• 74F-Fast TTL

dc e

TTL D Sh

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 19/52

2010

dc e

19 ©2010, CE Department

TTL Data Sheets

• Supply Voltage – Temperature Range• Voltage Levels

– VIL, VOL, VOH, VIHÆ

VNL, VNH

• Maximum Voltage Ratings

• Power Dissipation

– ICCH, ICCLÆ ICC(avg)Æ PD(avg)

• Propagation Delays

– tPLH, tPHLÆ tpd(avg)

dc e

TTL D Sh

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 20/52

2010

dc e

20 ©2010, CE Department

TTL Data Sheets

dc e

TTL D t Sh t

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 21/52

2010

dc e

21 ©2010, CE Department

TTL Data Sheets

• Loading and Fan-out

fan-out(LOW)

fan-out(HIGH)

• Example: In datasheet of 74ALS00

– I OL(max) = 8 mA, I IL(max) = 0.1 mA– I OH(max) = 0.4 mA = 400 μA, I OL = 20 μA

Æ fan-out(LOW) = 80, fan-out(HIGH) = 20

(max)

(max)

 IL

OL

 I 

 I =

(max)

(max)

 IH 

OH 

 I 

 I =

dc e

TTL D t Sh t

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 22/52

2010

22 ©2010, CE Department

TTL Data Sheets

• Loading and Fan-out

IOL = Σ IIL IOH = Σ IIH

dc e

Oth TTL Ch t i ti

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 23/52

2010

23 ©2010, CE Department

Other TTL Characteristics

• Unconnected Inputs (Floating) – Open input acts exactly like a logical 1 (HIGH)

• Unused Inputs – Left disconnected (undesirable – antenna)

 – Connect to VCC

(+5V) through a 1-kΩ resistor or toGND to produce for a constant-output logic level

 – Tied to a used input

2010

dc e

Oth TTL Ch t i ti

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 24/52

2010

24 ©2010, CE Department

Other TTL Characteristics

• Tied-Together Inputs – Represent a load – Sum of the load current rating

 – NAND, AND gates: LOW-state input load –  singleinput

2010

dc e

Other TTL Characteristics

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 25/52

2010

25 ©2010, CE Department

Other TTL Characteristics

• Biasing TTL Inputs Low

2010

dc e

Other TTL Characteristics

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 26/52

2010

26 ©2010, CE Department

Other TTL Characteristics

• Current Transients – high-amplitude current spike occurs when a totem-

pole TTL output goes from LOW to HIGH

 – Power-supply decoupling: capacitors connect from

VCC to GND (0.01 μF or 0.1 μF)

2010

dc e

MOSFET

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 27/52

2010

27 ©2010, CE Department

MOSFET

• Metal-oxide-semiconductor field-effect transistor.• Advantage

 – Simple, inexpensive to fabricate – Small, little power consumption

 – Suited for complex ICs

 – Faster than 74, 74LS, 74ALS TTL Series

• Disadvantage

 – susceptibility to static-electricity damage

2010

dc e

Enhancement MOSFET

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 28/52

2010

28 ©2010, CE Department

Enhancement MOSFET

• Use in digital ICs

2010

dc e

Basic MOSFET Switch

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 29/52

29 ©2010, CE Department

Basic MOSFET Switch

2010

dc e

Digital MOSFET Circuit

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 30/52

30 ©2010, CE Department

Digital MOSFET Circuit

• N-MOS or P-MOS – Use MOSFET as a switch

 – Implement all resistors using channel resistance of aMOSFET

 – Simple circuits and fabrication processes

• C-MOS (complementary MOS) – Use both P- and N-channel MOSFET

 – Increase complexity of IC fabrication process, lower

packing density

Æ Faster and less power consumption

2010

dc e

N MOS Inverter

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 31/52

31 ©2010, CE Department

N-MOS Inverter

• Gate of Q1 connected to

the drainÆ always ONÆ pull-up resistor 100 kΩ

Pull-upresistor

Switchon/off

2010

dc e

Complementary MOS Logic

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 32/52

32 ©2010, CE Department

Complementary MOS Logic

• CMOS Inverter

2010

dc e

Complementary MOS Logic

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 33/52

33 ©2010, CE Department

Complementary MOS Logic

• CMOS NAND Gate

2010

dc e

Complementary MOS Logic

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 34/52

34 ©2010, CE Department

Complementary MOS Logic

• CMOS NOR Gate

2010

dc e

CMOS Series

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 35/52

35 ©2010, CE Department

CMOS Series

• 4000/14000 Series• 74C Series

• 74HC/HCT (High-Speed CMOS )• 74AC/ACT ( Advanced CMOS )

• 74AHC/74AHCT ( Advanced High-Speed CMOS )

• BICMOS 5-Volt Logic

2010

dc e

Low-Voltage Technology

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 36/52

36 ©2010, CE Department

Low Voltage Technology

• CMOS Family – 74LVC ( Low-Voltage CMOS )

 – 74ALVC ( Advanced Low-Voltage CMOS )

 – 74LV ( Low-Voltage)

 – 74AVC ( Advanced Very-Low-Voltage CMOS )

• BiCMOS Family – 74LVT ( Low-Voltage BiCMOS Technology)

 – 74LVT ( Advanced Low-Voltage BiCMOS Technology)

 – 74ALB ( Advanced Low-Voltage BiCMOS )

2010

dc e

CMOS Characteristics (1)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 37/52

37 ©2010, CE Department

CMOS Characteristics (1)

• Power-Supply Voltage• Logic Voltage Levels

 – Not sink/source any significant amount of current

– V OL: close to 0 V, V OH: close to VDD

• Noise Margins: greater than TTL

– V NH = V OH(min) – V IH(min)

– V NL = V IL (max) – V OL(max)

• Power Dissipation – Extremely low Æ Suitable for applications using

battery power

2010

dc e

CMOS Characteristics (2)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 38/52

38 ©2010, CE Department

CMOS Characteristics (2)

• P D increases with Frequency – Increase in proportion to the frequency at switching

states of the circuit (LOW to HIGH)

2010

dc e

CMOS Characteristics (3)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 39/52

39 ©2010, CE Department

CMOS Characteristics (3)

• Fan-Out: depend on – Permissible maximum propagation delay

 – Frequency

2010

dc e

CMOS Characteristics (4)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 40/52

40 ©2010, CE Department

CMOS Characteristics (4)

• Switching Speed – Faster than N-MOS and P-MOS (low output resistance

 – 1 kΩ vs. 100 kΩ)

• Unused Inputs

 – Never left disconnected : susceptible to noise and

static charges – Tie to fixed voltage level (0V or V  DD) or to another input

• Static Sentivity

• Latch-Up

 – Transistors stay ON permanently

 – Solution: Clamping diodes

2010

dc e

Output Combination (sharing a common wire)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 41/52

41 ©2010, CE Department

Output Co b at o ( g )

• Conventional CMOS outputs, TTL totem poleoutputs should never be tied together

 – Output voltage: in the indeterminate range

 – Damage the ICs

2010

dc e

Open-Collector/Open-Drain Outputs

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 42/52

42 ©2010, CE Department

p p p

• Solution: remove the active pull-up transistor  – CMOS output circuits: open-drain ouputs

 – TTL totem pole output circuit: open-collector ouputs

 – Output LOW state: no problem

 – Output HIGH state: external pull-up resistor R p

2010

dc e

Open-collector/drain outputs Application

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 43/52

43 ©2010, CE Department

p p pp

Wired-ANDconnection

Open-collector/drainBuffer/Driver

2010

dc e

Tristate (Three-State) Logic Ouputs

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 44/52

44 ©2010, CE Department

( ) g p

• Allow three possible output states: – HIGH, LOW

 – High-impedance (Hi-Z): both pull-up and pull-down

transistors are turned OFF

• Have an enable input (OE – output enable)

2010

dc e

Tristate (Three-State) Logic Ouputs

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 45/52

45

( ) g p

• Advantage – Tristate ICs output can be connected together

 – Low-impedance, high-speed characteristic

• Application: Tristate Buffers

Bus contention

2010dc e

CMOS Transmission Gate (Bilateral Switch)

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 46/52

46

( )

• Pass signals in both directions• Digital and analog applications

2010dc e

IC Interfacing

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 47/52

47

• Connecting the output(s) to the input(s) ofdifferent electrical charateristic systems.

• Take advange of the strong points of each IC

family – High-speed, greater output current/voltage capability,

high frequency

• Concerned problems

 – Fan-out

 – Voltage and current parameters

2010dc e

TTL Driving CMOS

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 48/52

48

• Current: no problem• Output votages

– V OH(min) of TTL: too low when compared with V IH(min)

of CMOS

 – Solution: Pull-up resistor at TTL output

2010dc e

TTL Driving CMOS

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 49/52

49

• Driving High-Voltage CMOS – Use TTL series from certain manufacturers that can

operate with an high-voltage output pull-up

 – Utilize a voltage level-translator

2010dc e

CMOS Driving TTL

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 50/52

50

• Driving TTL in the HIGH State: no problem• Driving TTL in the LOW State:

 – Excepting 4000B series, 74HC/74HCT series have no

trouble driving a single TTL load of any series

 – Concern fan-out problem

 – Use buffer to interface low-current CMOS to high-current TTL

2010dc e

CMOS Driving TTL

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 51/52

51

• High-Voltage CMOS Driving TTL – Use TTL series that can withstand high-voltage input

 – Use voltage level-translator

2010dc e

Reference

7/30/2019 Chapter1_Integrated-Circuit Logic Family

http://slidepdf.com/reader/full/chapter1integrated-circuit-logic-family 52/52

52

• Chapter 8, Digital System – Principles andApplications, Ronald J.Tocci, Neal S. Widmer