29
7/21/2019 Chapter04 04 http://slidepdf.com/reader/full/chapter04-04 1/29

Chapter04 04

  • Upload
    no

  • View
    280

  • Download
    6

Embed Size (px)

DESCRIPTION

Chapter 4

Citation preview

Page 1: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 1/29

Page 2: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 2/29

Example Problem 4.4–1Six bolts are used in the connection between the axial member and

the support, as shown in i!ure E4.4–1. "he ultimate shear

stren!th o# the bolts is 3$$ %Pa, and a #actor o# sa#et& o# 4.$ is

re'uired with respect to #racture. (etermine the minimumallowable bolt diameter  D re'uired to support an applied load o#  P  

) 35$ *+. 

i!ure E4.4–1

Page 3: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 3/29

Solution

"o support a load o# V  ) 5,333.333 +, the area sub-ected to

shear stress #or each bolt must e'ual or exceed

"he allowable shear stress #or the bolts is

"o support a load o#  P  ) 35$ *+, each o# the six bolts must support a load o

τ allow

 = τ 

ult

S

=3$$ %Pa

4

= /5 %Pa

V  ≥  P

6 bolts=

35$,$$$ +

6 bolts= 5,333.333 +0bolt

 AV  ≥  V 

τ allow

=5,333.333 +0bolt

/5 +0mm2  = ///.// mm2 0bolt

Page 4: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 4/29

Solution

Each bolt acts in double shear there#ore, the area sub-ected to shear stress #

"he minimum bolt diameter can be #ound be e'uatin! the two expressions #o

 AV  = 2 sur#aces per bolt

π 

4d

 bolt

2

2 sur#acesπ 

4d

 bolt

2≥ ///.// mm2

∴d bolt

 ≥ 22.252 mm = 22.3 mm

Page 5: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 5/29

Example Problem 4.4–2 steel plate is to be attached to a support with three bolts as shown in i!ur

crosssectional area o# the plate is $$ mm2 and the &ield stren!th o# the stee

"he ultimate shear stren!th o# the bolts is 425 %Pa. #actor o# sa#et& o# 1.6

&ield is re'uired #or the plate. #actor o# sa#et& o# 4.$ with respect to the ultstren!th is re'uired #or the bolts. (etermine the minimum bolt diameter re'u

the #ull stren!th o# the plate.  Note: consider onl& the !ross crosssectional a

 7not the net area.

i!ure E4.4–2

Page 6: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 6/29

Solution

"he allowable shear stress o# the bolts is

"he allowable normal stress is

"he #ull stren!th o# the plate based on the !ross crosssectional area is ther

σ allow

 = σ 

S=

25$ %Pa

1.6/=148./$1 %Pa

Pmax

 =σ allow

 A= 148./$1 %Pa$$ mm2 =118,/6$. + = 118. *+

τ allow

 = τ 

ult

S=

425 %Pa

4.$=1$6.25 %Pa

Page 7: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 7/29

Solution

E'uatin! the two expressions #or the shear area, the minimum bolt diameter

computed

Each o# the bolts supports an e'ual share o# the load thus, each bolt must sup

#orce o# 

or each bolt, the minimum shear area re'uired to support a load o# V  ) 38,8

Each bolt acts in sin!le shear, thus

V  ≥  P

max

3 bolts

=118,/6$. +

3 bolts

= 38,82$.26/ +0bolt

 AV  ≥ 38,82$.26/ +

1$6.25 +0mm2 = 3/5./2$ mm

20bolt

 AV  = 1 sur#ace per boltπ 

4d

 bolt

2

1 sur#aceπ 

4d

 bolt

2≥ 3/5./2$ mm2

∴d bolt

 ≥ 21./2 mm = 21.8 mm

Page 8: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 8/29

Example Problem 4.4–3

9n i!ure i!ure E4.4–3, member 1 is a steel

 bar with a crosssectional area o# 1./5 in.2 and

a &ield stren!th o# 5$ *si. %ember 2 is a pair

o# 6$61"6 aluminum bars hain! a combinedcrosssectional area o# 4.5$ in.2 and a &ield

stren!th o# 4$ *si. #actor o# sa#et& o# 1.5

with respect to &ield is re'uired #or both

members. (etermine the maximum allowable

load  P  that ma& be applied to the structure.

:eport the #actors o# sa#et& #or both membersat the allowable load. 

i!ure E4

Page 9: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 9/29

Solution

and rearran!in! E'. c !ies an expression #or  P  in terms o#  F 2

;onsider a <( o# -oint  B and write the #ollowin! e'uilibrium e'uations

Substitutin! E'. c into E'. a !ies an expression #or  P  in terms o#  F 1

ΣF  x  = F 

2cos55°− F 

1 = $........................................a

ΣF  y  = F 

2sin55°− P = $.........................................b

rom E'. b

F 2 =

  P

sin55°...........................................................c

F 2

cos55°− F 1

 = $

P

sin55°

 

 

   

 ÷cos55°− F 

1 = $

P = F 1tan55°

P = F 2 sin55°

Page 10: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 10/29

Solution

"he allowable normal stress in member 2 is

"he allowable normal stress in member 1 is

and the allowable #orce in member 1 is

"he allowable normal stress in member 2 is

Substitute the allowable #orce in member 1 #rom E'. # into E'. d to ob

maximum load  P  based on the capacit& o# member 1

σ allow,1

 =σ Y ,1

S1

=5$ *si

1.5= 33.333 *si

F allow,1

 =σ allow,1

 A1 = 33.333 *si1./5 in.2 = 5.333 *ips

σ allow,2

 =σ Y ,2

S2

=4$ *si

1.5

= 26.66/ *si

F allow,2

 =σ allow,2

 A2 = 26.66/ *si4.5$ in.2 =12$.$ *ips

P ≤ F allow,1 tan55° = 5.333 *ipstan55° =3.3$ *ips

Page 11: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 11/29

Solution

"he #actor o# sa#et& in member 1 is thus

:epeat with the allowable #orce in member 2 #rom E'. ! substituted into E

obtain the maximum load  P  based on the capacit& o# member 2 

;ompare the results in E's. h and i to #ind that the maximum load  P  that

controlled b& the capacit& o# member 1 

or an applied load o#  P  ) 3.3 *ips, the #orce in member 2 can be compute

#rom E'. c

P ≤ F allow,2

sin55° = 12$.$ *ipssin55° = 8.28 *ips

Pmax

 = 3.3 *ips

S1  = 1.5

F 2 =   P

sin55° = 3.3$ *ips

sin55°  =1$1./$$ *ips

Page 12: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 12/29

Solution

which results in a normal stress o# 

and thus, its #actor o# sa#et& is

σ 2 = F 

2

 A2

=1$1./$$ *ips

4.5$ in.2  = 22.6$$ *si

S2 =

σ Y ,2

σ 2

=4$ *si

22.6$$ *si

= 1.//$

Page 13: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 13/29

Example Problem 3.3–4

:i!id bar  ABD  in i!ure E3.3–4  is

supported b& a pin connection at  A  and a

tension lin*  BC . "he mmdiameter pin at

 A  is supported in a double shear

connection, and the 12mmdiameter pins

at  B  and C   are both used in sin!le shear

connections. =in*  BC   is 3$mm wide and

6mm thic*. "he ultimate shear stren!th o#

the pins is 33$ %Pa and the &ield stren!th

o# lin*  BC  is 25$ %Pa.a (etermine the #actor o# sa#et& in pins  A 

and  B  with respect to the ultimate shear

stren!th.

b (etermine the #actor o# sa#et& in lin*

 BC  with respect to the &ield stren!th. 

i!ure E3.3–4

Page 14: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 14/29

Solution

;onsider a #reebod& dia!ram o# the ri!id bar. =in*

 BC  is a two#orce member that is oriented at an

an!le o#θ 

 with respect to the hori>ontal axis 

"he e'uilibrium e'uations #or the ri!id bar can be

written as

tanθ  = $.4 m

$.35 m∴θ  = 4.14°

ΣF  x  = −F 

BCcos4.14°+ 6.2 *+cos/$°+ A

 x = $

ΣF  y  = F 

BCsin4.14°− 6.2 *+sin/$°+ A

 y = $

ΣM A = $.6 mF 

BCcos4.14°+ $.35 mF 

BCsin4.14°

−1.35 m6.2 *+sin/$°− $.6 m6.2 *+cos/$° = $

Page 15: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 15/29

Solution

Solin! these three e'uations simultaneousl& !ies

"he resultant #orce at pin  A is

<e#ore the #actors o# sa#et& can be determined, we must compute the shearstresses in pins  A and  B as well as the normal stress in lin*  BC .

F BC =13./6 *+   A

 x = /.$1/ *+   A

 y = −4.61/ *+

 A =   A x 

2 + A y 

2 = /.$1/ *+2 + −4.61/ *+2 =.4$$ *+

Page 16: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 16/29

Solution Pin shear stresses:

"he mmdiameter pin at  A is supported in a double shear connection ther

#orce actin! on one shear plane which is simpl& e'ual to the crosssectional

is hal# o# the resultant #orce at pin  A V  A ) 4.2$$ *+. "he crosssectional aris

and there#ore, the shear stress in pin  A is

"he 12mmdiameter pin at  B and C  is supported in a sin!le shear connectio

and so the shear #orce actin! on one shear plane is the entire #orce in lin*  B

V  B ) 13./6 *+. "he crosssectional area o# the pin at  B is

 

 A pin  A

 = π 

4 mm2

= 5$.265 mm2

τ  A =V  A

 AV 

=4.2$$ *+1$$$ +0*+

5$.265 mm2

  = 3.552 +0mm2= 3.552 %Pa

 A pin B

 =  π 4

12 mm2 =113.$8/ mm2

Page 17: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 17/29

Solution

and thus, the shear stress in pin  B is

 Normal stress in link:

"he normal stress in lin*  BC  is 

τ B =

V B

 AV  =

13./6 *+1$$$ +0*+

113.$8/ mm2   =122.683 +0mm2

=122.683 %Pa

σ BC = F 

BC

 ABC=

13./6 *+1$$$ +0*+

3$ mm6 mm

= //.$8$ +0mm2= //.$8$ %Pa

Page 18: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 18/29

Solution

Factors of safety:

or pin  A, the #actor o# sa#et& is

or pin  B, the #actor o# sa#et& is

"he #actor o# sa#et& in lin*  BC  is

 

S A =  τ u

τ  A

= 33$ %Pa3.552 %Pa

= 3.85

SB = τ 

u

τ B

=33$ %Pa

122.683 %Pa= 2.68

SBC =

σ  y 

σ BC

=25$ %Pa

//.$8$ %Pa= 3.24

Page 19: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 19/29

Example Problem 3.3–5

"he simple pinconnected structure carries

a concentrated load  P  as shown in i!ure

E3.3–5. "he ri!id bar is supported b& strut

 AB and b& a pin support at C . "he steel

strut  AB has a crosssectional area o# $./5

in.2 and a &ield stren!th o# 6$ *si. "he

diameter o# the steel pin at C  is $.5 in., and

the ultimate shear stren!th is 54 *si. 9# a

#actor o# sa#et& o# 2.$ is re'uired in both

the strut and the pin at C , determine themaximum load  P  that can be supported b&

the structure. 

i!ure E3.3

Page 20: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 20/29

Solution

Substitute this result into E'. a to express C  x in terms o#  P 

rom a <( o# the ri!id bar, the #ollowin!

e'uilibrium e'uations can be written

rom E'. c, express  F 1 in terms o# the un*nown load  P  

"he resultant reaction #orce at pin C  can now be expressed as a #unction o#  P

ΣF  x = −F 

1+C

 x = $..................................a

ΣF  y =C

 y − P = $....................................b

ΣMC = in.F 

1− 15 in.P = $...............c

F 1 = 15 in.

in.

P =1./5P

C x = F 

1 = 1./5P

C   =   C x 

2+C

 y 

2= 1./5P2

+ P2= 2.125$P

Page 21: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 21/29

Solution

rom E'. d, the maximum load that ma& be applied to the ri!id bar based

limitations on the strut normal stress is 

 Strut AB:

"he allowable normal stress #or strut  AB is

"here#ore, the allowable axial #orce #or strut  AB is

σ allow

 = σ 

S=

6$ *si

2.$= 3$ *si

F allow,1

 =σ allow A

1 = 3$ *si$./5 in.2 = 22.5$ *ips

Pmax

 ≤F 

allow,1

1./5=

22.5$ *ips

1./5=12.$ *ips

Page 22: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 22/29

Solution

thus, the allowable reaction #orce at C  is

 Pin C:

"he allowable shear stress #or the pin at C  is 

"he $.5in.diameter double shear pin at C  has a

shear area o# 

τ allow

 = τ 

ult

S=

54 *si

2.$= 2/ *si

 AV  = 2 sur#aces

π 

4D

 pin

2= 2 sur#aces

π 

4$.5 in.

2= $.382/ in.

2

Callow

= τ allow

 AV  = 2/ *si$.382/ in.

2 =1$.6$3 *ips

Page 23: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 23/29

Solutionrom E'. e, the maximum load that ma& be

applied to the ri!id bar based on the limitations

on the pin shear stress is 

 Maximum load P:

;omparin! the results in E's. # and !, the

maximum load  P  that ma& be applied to the ri!id

 bar is 

Pmax

 ≤C allow

2.125$=

1$.6$3 *ips

2.125$= 4.88$ *ips

Pmax

 = 4.88$ *ips = 4.88 *ips

Page 24: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 24/29

Example Problem 3.3–6

9n i!ure E3.3–6, the ri!id member  ABDE   is

supported at  A b& a sin!le shear pin connection

and at  B b& a tie rod 1. "he tie rod is attached

at  B  and C   with double shear pin connections.

"he pins at  A,  B, and C   each hae an ultimate

shear stren!th o# $ *si, and tie rod 1 has a

&ield stren!th o# 6$ *si. concentrated load o#

 P  ) 24 *ips is applied perpendicular to  DE , as

shown. #actor o# sa#et& o# 2.$ is re'uired #or

all components. (etermine

a the minimum re'uired diameter #or the tie

rod.

b the minimum re'uired diameter #or the pin at

 B.

c the minimum re'uired diameter #or the pin at

 A. 

i!ure E3.3–6

Page 25: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 25/29

Solution

rom E'. c 

%ember 1 is a two#orce member that is oriented at θ  with respect to

the hori>ontal axis 

rom a <( o# ri!id structure  ABDE , the #ollowin!e'uilibrium e'uations can be written 

tanθ  =8 #t

6 #t=1.5   ∴θ  = 56.31$°

ΣF  x = P cos/$°− F 

1cos56.31$°+ A

 x  = $..........a

ΣF  y  = −P sin/$°− F 

1sin56.31$°+ A

 y  = $.........b

ΣM A = F 

1cos56.31$°8 #t

−Pcos/$°?13 #t + #tsin2$°@

−P sin/$°? #tcos2$°@= $..........................c

F 1 = P cos/$°?13 #t + #tsin2$°@+ sin/$°? #tcos2$°@

8 #tcos56.31$°

= 48.34 *ip

Page 26: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 26/29

Solution

"he resultant pin #orce at  A is #ound #rom  A x and  A y

Substitute  F 1 into E'. a to obtain  A x

and substitute  F 1 into E'. b to obtain  A y

 A x 

 = F 1

cos56.31$°− P cos/$°

= 58.34 *ipscos56.31$°− 24 *ipscos/$°= 24.82 *ips

 A y  = F 

1sin56.31$°+ Psin/$°

= 58.34 *ipssin56.31$°+ 24 *ipssin/$°

= /2.33 *ips

 A =   A x 

2+ A

 y 

2= 24.82 *ips2

+ /2.33 *ips2= /6.53$ *ips

Page 27: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 27/29

Solution

"here#ore, the minimum tie rod diameter is

a "he allowable normal stress #or tie rod 1 is

"he minimum crosssectional area re'uired #or the tie rod is

σ allow

 = σ 

S

=6$ *si

2.$

= 3$.$ *si

 Amin ≥  F 

1

σ allow

=58.34 *ips

3$.$ *si=1.884 in.

2

π 

4d

1

2 ≥1.884 in.2 ∴d1 ≥1.584 in.= 1.584 in.

Page 28: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 28/29

Solution

"he pin diameter can be computed #rom

b "he allowable shear stress #or the pins at  A,  B, and C  is

"he doubleshear pin connection at  B and C  must support a load o#  F 1 ) 5

*ips. "he shear area  AV  re'uired #or these pins is 

τ allow

 = τ 

ult

S

=$ *si

2.$

= 4$.$ *si

 AV  ≥  F 

1

τ allow

=58.34 *ips

4$.$ *si=1.486 in.2

2 sur#acesπ 

4d

 pin

2 ≥1.486 in.2 ∴d pin

 ≥ $.8/6 in.

Page 29: Chapter04 04

7/21/2019 Chapter04 04

http://slidepdf.com/reader/full/chapter04-04 29/29

Solution

c "he pin at  A is a sin!le shear connection there#ore, AV  )  A pin. "he shear ar

 AV  re'uired #or this pin is

"he pin diameter can be computed #rom

 AV  ≥  Aτ 

allow

= /6.53$ *ips4$.$ *si

=1.813 in.2

1 sur#aceπ 

4 d pin

2

≥1.813 in.2

∴d pin  ≥ 1.561 in.