33
CHAPTER II 22 Systems with Variable Amount of Matter. The Che mical Potential. A system with constant quantity of matter is calle d 闭 闭 ” 闭 闭 ” A system exchanged matter with external is called 闭 闭 ” 闭 闭 ” Let us turn now to these thermodynamic systems. The examples of matter change: various chemical transformations of chemical compo und. melting, crystalline, evaporation, and phase trans ition. ( 闭闭闭闭闭闭闭闭 闭闭闭 闭闭闭 闭闭闭 闭闭 、、、、 )

CHAPTER II

  • Upload
    adara

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

CHAPTER II. 22 Systems with Variable Amount of Matter. The Chemical Potential. A system with constant quantity of matter is called “ 闭 系 ” A system exchanged matter with external is called “ 开 系 ” Let us turn now to these thermodynamic systems. The examples of matter change: - PowerPoint PPT Presentation

Citation preview

Page 1: CHAPTER II

CHAPTER II• 22 Systems with Variable Amount of Matter. The Chemic

al Potential.

• A system with constant quantity of matter is called

“ “ 闭 系 ”闭 系 ”• A system exchanged matter with external is called

“ “ 开 系 ”开 系 ”• Let us turn now to these thermodynamic systems.

• The examples of matter change:

• various chemical transformations of chemical compound.

• melting, crystalline, evaporation, and phase transition.

• ( 化合物的化学反应、溶化、结晶、蒸发、相变 )

Page 2: CHAPTER II

The basic formulae of variable-mass system

• First is the internal energy U. U has not only its own natural variables, S and V, but also has a variable N, characterizing the number of moles. Therefore, it follows

dU = TdS – PdV + dN has the dimension of energy per mole and is referred to

as the “chemical potential” of a substance, which is

VSN

U

,

• Subdivide the thermodynamic quantities into extensive (additive) and intensive.

• 广延量• 强度量

Page 3: CHAPTER II

广延量与强度量

• 体积 V 、熵 S 、内能 U 均是广延量。若系统内物质的摩尔数为 N ,定义单位摩尔的物理量:

SNSUNUVNVSUV~

,~

,~

:~

,~

,~

• 当系统的分子数发生变化时, V 、 S 、 U 将随之变化,而强度量 T 、 P 却不发生变化。 By virtue of formulae:

PVTSUGPVUHTSUF ,,

and

),(~

),,(),,(~

),,(

),(~

),,(),,(~

),,(

PTGNNPTGPN

SHNNPSH

N

VTFNNVTF

N

V

N

SUNNVSU

We have further expression:

Page 4: CHAPTER II

Thermodynamic functions for variable-mass system

• From above functions, we can define:

,,

,,

dNVdPSdTdGdNVdPTdSdG

dNPdVSdTdFdNPdVTdSdU

PTPSVTVS N

G

N

H

N

F

N

U,,,, )()()()(

• The Gibbs function of one mole is defined as:

PTN

GPTPTG

N

G,)(),(),(

~

• Thus, the differential ( 微分形式 ) of is expressed by:dPVdTSd

~~

• 理解:单位摩尔物质,吉布斯函数是强度量的函数,物质分子数的增加,并不增加单位摩尔吉布斯函数,而是增加系统总的吉布斯函数。然而,强度量 T、 P的变化导致化学势的变化。

定义式

Page 5: CHAPTER II

• 根据吉布斯的定义,摩尔数 N可以看做是一个特殊坐标,化学势是一个 conjugate generalized force(共轭广义力 ).

• 可以得到偏导数间的对应关系:

VNVSVNVSNVNS SN

P

SN

T

S

P

V

T

,,,,,,

,,

• 单位 Jocobian 行列式为:

,,1),(

),(

,,1),(

),(

,,1),(

),(

constSatN

VP

constVatN

ST

constNatVP

ST

Page 6: CHAPTER II

The differentials of free energy, enthalpy are treated in same way

,,1),(

),(

,,1),(

),(

constTatN

VP

constPatN

ST

• Being an intensive quantity, the chemical potential is both independent of the number of moles and volume.

Page 7: CHAPTER II

23 The Increase in entropy in equalization processes, The Gibbs paradox

• Previously, the equilibrium processes;

• Presently, concern non-equilibrium processes:

• 1) in a closed system, two or more parts, each equilibrium;

• 2) the initial and intermediate states are non-equilibrium;

• 3)come into a completely equilibrium;

• 4)an equilibrium adiabatic process, but entropy change.

Page 8: CHAPTER II

What is Entropy

• We have known:• Entropy is a constant parameter in adiabatic process.• Entropy is a thermodynamic quantity like P、 V、 T.

• How we define Entropy ?,

T

QS

•The change in entropy in an isothermal process is the quantity of heat, the system absorbed, divides the temperature of heating.

•This definition is applicable to any thermodynamic process.

T

QC

Page 9: CHAPTER II

Equalization of Temperature

• Only two equilibrium bodies are considered in a system.

• Temperatures are T1 and T2(T1 > T2), “contact”

• The system is heat-insulated, there exists heat transfer:• The left: Q1= - Q ;

• The right: Q2= Q .• The entropy also changed:

• The left: S1= - Q /T1 ;

• The right: S2= Q /T2.

• How about the total S?

Page 10: CHAPTER II

The Total Entropy

• The change in entropy of each body depends 1) not on the manner of removed heat, in reversible or irreversible way;

• 2) on the quantity of heat.

• For a real irreversible process, the variation in the total entropy

0)11

(12

21 TT

QdSdSdS

•the variation in the total entropy is positive

Page 11: CHAPTER II

Equalization of Pressure• 1)A piston,• 2) a heat-insulated cylinder between two

volumes, 3) at equal temperature, • 4) different pressure• Process is irreversible, isoenergetic

• Replace this by an imaginary process:

• The pressure is P1-P2- , the volume is dV.

is infinitely small.

• The real irreversible and imaginary process have the same initial and final states.The system performs work (P1-P2)dV = A= Q

•The increase in entropy is: 021

dVT

PP

T

QdS

Page 12: CHAPTER II

Some examples: The Gay-Lussac Process

• The Joule-Thomson process is at constant internal energy.

• dU = TdS – P dV =0

0

0)()()(

)()()(

0)()(

dVT

PdS

T

P

U

S

V

U

V

S

dVV

SdV

U

S

V

UdS

PdVTdSdVV

UdS

S

UdU

VSU

UVS

SV

Entropy increases during

this irreversible free expansion.

Page 13: CHAPTER II

The Joule-Thomson Process

• An equivalent reversible process occurs at a constant heat content (一个等价的可逆过程以等焓发生 )。

• dH = T dS + V dP,• Whence(由此 ), [hence]: 0

T

V

P

S

H

Therefore, the JT process is an entropy increase process.

.0So,0As SP

For examining the increase in entropy, the molar entropy of a perfect gas is considered from famous Eq.4.6.

)~

~ln(

1

~~1

00

1

0

VT

VTRSS

Page 14: CHAPTER II

1000

1 ~ln

1

~)

~ln(

1

~

VT

RSVT

RS

ATVNR

VTR

SNNNRTVNR

VTR

SNVTNR

S

)ln(1

]~

ln1

~[ln)ln(

1

]~

ln1

~[)

~ln(

1

1

1000

1

1000

1

Page 15: CHAPTER II

The entropy of a mixture of two different perfect gases

• Two cylinders have equal volumes V. Vessel 1 and 2 contains N1 a

nd N2 moles of the first gas A and second gas B, respectively. • C is a heat-insulating enclosure.• Two cylinders can freely entering each other without friction( 磨

擦 )

• Gibbs: Carry out mentally an experiment. ( 在大脑中进行实验 )

Page 16: CHAPTER II

• Vessel 1: a is the wall, permeable to the molecules B, not A.

• Vessel 2: b is the wall, permeable to the molecules A, not B.

• Let vessel 2 insert slowly into vessel 1, then the space ab contains the mixture of gases.

• As freely permeating of two molecules, A no pressure on b. Two walls of V2 are exposed to the same pressure.

• T is not changed on the condition of A = 0,Q = 0.

• The Entropy in this reversible mixture process is

),(),(),( 21 VTSVTSVTS

Page 17: CHAPTER II

Interdiffusion of Two Gases

• A heat-insulated vessel separated by a partition( 隔离物 ).

• Two different perfect gases, same T, P.

•The entropy satisfied

2,12,12,12,11

2,12,1

2,12,1 ln)ln(

12,1 NRNNBTV

RNS

•Partition is removed, and A=0, Q=0, U=0, the entropy is

0)ln()ln(2

212

1

211

V

VVRN

V

VVRNS

Page 18: CHAPTER II

Discussion• Last formula is so-called Gibbs paradox( 吉布斯谬论 ) ,因

为等号右边没有两种气体性质的参量。因此,当两种气体完全相同时,“熵增加”。

• 解释:当两种气体完全相同时,不发生“相互渗透” . “ 熵不增加”。• Impermeable

• 广延量熵的表述为:

BTN

VRNS 1)ln[(

1

结论: moles N and volume V are increased n times, the entropy will increases in the same proportion.

Page 19: CHAPTER II

The Entropy increase principle• Several examples demonstrate that the en

tropy of an isolated system undergoing equalization processes increases, dS > 0. Prove? No, but in statistics.

• In any isolated system, the entropy reaches its maximum value in the state of equilibrium.

• How about universe? Silence finally?

Page 20: CHAPTER II

Reversible and Irreversible?• 热力学第一定律 ( 能量定律 ) 允许的过程• 1 。热量从高温物体流向低温物体,及其逆过程。• 2 。物体因磨擦力而减速运动的过程;• 3 。气体向真空自发 spontaneous 膨胀的过程 (the Gay-L

ussac process) ,其逆过程为自发压缩;• 4. 两种不同的气体相互扩散和混合气体自发分离的过程。• 还可以找出很多这样的过程• 上述四个过程的逆过程实际是被禁止的,熵增加原理允

许自发的熵增加的过程,禁止熵减小的自发过程 ( 第二定律 ) ,除非熵减小的过程是非自发的。

作业: P121 problem,

Page 21: CHAPTER II

24.Eetrema of Thermodynamic Functions 极限

• 自发的绝热过程,熵会增加,下面考虑两个问题:

• 1) 非绝热的自发过程或可逆过程,熵如何变化;

• 2) 其他热力学函数是否存在类似的极限规律?

Page 22: CHAPTER II

第一个问题的分析• Consider a not heat-insulated irreversible process. Heat

Q is added to or removed from the system. • This process is mentally visualized as two processes: one is spontaneous process:

dS1>0, Q 1 = 0 second is not heat-insulated process:

if heat is added dS2>0, Q 2 = Q=T dS2 >0

if heat is removed dS2<0, Q 2 = Q=T dS2 <0• Results of inequality:

TdSQT

QdSdSdS

,21

Page 23: CHAPTER II

第二个问题的分析• 如果熵的不等式成立,则热力学函数的不等式将很容易解决。

• 考虑能量定律 (第一定律 )

PdVQdU 用熵代替:

PdVTdSdU

其他热力学函数

PdVSdTdG

VdPTdSdH

PdVSdTdF

Page 24: CHAPTER II

Corollaries stemming from inequalities( 源于不等式的推论 )

• V = const, and T = const : dF < 0;• P = const, and T = const : dG < 0;• P = const, and S = const : dH < 0.• Inequalities stem from irreversible process.• dS>0; dF < 0; dG < 0; dH < 0.• If we put the material in “V = const, and T = const “, and s

uddenly a disturb make the materials in inequality.

Page 25: CHAPTER II

平衡条件下的物理意义• 一个系统是否达到了平衡,其判断的依据是什么?• 考虑一个物体与外界接触,且不为热平衡。• 外界: T0、 P0;物体: T、 P。外界的条件始终不变。• For a closed system:

VPSTVPSTUU 00000000

Total entropy must increase: 00 SS

Inequality is 0)( 00 VPSTU

So, at T=T0, and V=V0

T=T0, and P=P0 min

min

,0

,0

GGdG

FFdF

Page 26: CHAPTER II

26. Phase Equilibrium. First-Order Phase Transitions( 一阶相

变 )• We have considered homogeneous systems.( 均匀系统 )• Turn to system comprising several phases in equilibrium.• a “phase( 相 )” : a homogeneous part of a system.• Several phases are separated by a well-defined boundary.• Example: two phases of a liquid and a vapour at constant

temperatures T and pressures P. • The number of moles in each phase, N1 and N2.• We use G to describe the transition:

2211 dNdNVdPSdTdG

2211, dNdNdG PT and12 ,,

22,,

11 )(,)( NPTNPT N

G

N

G

Page 27: CHAPTER II

Equalization condition

• dG < 0, two phases: N1+N2 = const, dN1 = - dN2

0)( 121 dN

211211 ,0If,,0If dNdN• Discussion:

• dN1< 0 表示 N1 减少, N2 增加。即化学势大的物质减少,化学势小的物质增加。将化学势对应某种能量或能级,则可认为粒子从高能级自动流向低能级,如果粒子的流动会引起化学势的变化,可以预见,平衡时化学势相等。

Page 28: CHAPTER II

等化学势的物理意义• 不平衡的系统中,• “ 温度差导致了 heat transfer”• “ 压强差导致了 gas flow ”• “ 化学势差导致了 mass flow”• Mass transfer terminates when the chemical po

tentials become equal.• ( 等化学势终止了质量流 )• 化学势也是一个热力学参量,如温度和压强,

也是广延量。

Page 29: CHAPTER II

由化学势所得到的:• 化学势虽然与物质的性质有关 ( 如水与汽 ) ,但同时也

与热力学参量 P 和 T 密切相关,平衡时可以表达为

),(),( 21 PTPT

• 由此平衡关系可以得到相变点的压强与温度的关系。)(),( PTTorTPP

• 例如水与汽平衡,一个大气压时的温度为固定值。压强变化则温度相应变化。其关系称之为“相图”。

相变发生时,热力学量是如何变化的?

Page 30: CHAPTER II

融化吸热相变• 相变时,如未饱和水、汽共存时,水会继续蒸发。设

水为物质 1 ,汽为物质 2 。共存温度为 T ,压强为 P ,外界提供热量 dQ 。熵变为 dS = dS1 +dS2 。

T

dNPdVUddNPdVUddSdSdS

)()( 2222111121

因 dU1 +dU2 = 0 , dV1 +dV2 = 0 , dN1 +dN2 = 0 。

T

dNdS 221 )(

因此,提供的热量 TdS 使 dN2 的水化为汽,其比例系数为化学势之差。为了讨论的方便,引入摩尔熵 $ 。

Page 31: CHAPTER II

一阶相变• 将化学势等效于摩尔吉布斯函数,得到如下关系式:

VP

ST TP

~)(,

~)(

• 摩尔熵和摩尔体积为吉布斯函数的一阶导数。将摩尔熵和摩尔体积发生突变的相变称之为一阶相变。水变成汽的相变为一阶相变。定义相变的摩尔热量为,则

)~~

( 12 SST 化学势的全微分为: dPVdTSd

~~

当温度 T 和压强 P 发生变化时,两相化学势的变化相同:

dPVdTSddPVdTSd 222111

~~~~

Page 32: CHAPTER II

• 将上式整理得:

)~~

(~~

~~

1212

12

VVTVV

SS

dT

dP

上式称之为 Clapeyron-Clausius equation 。 “克拉珀龙 -克劳修斯方程 ”

• 例:冰在 1pn 下的熔点为 273.15K ,熔解热为 =3.35Jkg-1 ,冰与水的比容分别为 1.0907*10-3 和 1.00013*10-3m3kg-1 ,

• 由此计算得到: dT/dP = -0.00752 ,• 实验: dT/dP = -0.0075 。

作业, ( 中文 )P144 : 3.4(1) 、 3.7 、 3.9 、 3.16

Page 33: CHAPTER II

化学势的变化图