64
Chapter 9 - Transcriptional Control of Gene Expression

Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Embed Size (px)

Citation preview

Page 1: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Chapter9- TranscriptionalControlofGeneExpression

Page 2: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Chapter9- TranscriptionalControlofGeneExpression

9.1ControlofGeneExpressioninBacteria9.2OverviewofEukaryoticGeneControl9.3RNAPolymeraseIIPromotersandGeneralTranscriptionFactors9.4RegulatorySequencesinProtein-CodingGenesandtheProteinsThroughWhichTheyFunction9.5MolecularMechanismsofTranscriptionRepressionandActivation9.6RegulationofTranscription-FactorActivity9.7EpigeneticRegulationofTranscription9.8OtherEukaryoticTranscriptionSystems

Page 3: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

InteractwithoutsideworldBehavior– Output– Change

Environmentalchange– Behavioralchange…

CelllevelMoleculelevel

Organlevel

Behaviorlevel

Page 4: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Interactwithoutsideworld

CelllevelMoleculelevel

What’sthebasicproductofcell?

ProteinsGene

Genome

Howtoregulatetheproteinexpression?

Environmentalchanges

1. Transcription

1. Translation

1. Proteindegradation

1. RNAdegradation

Page 5: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Interactwithoutsideworld

CelllevelMoleculelevel

What’sthebasicproductofcell?

ProteinsGene

Genome

What’sthemostefficientwaytoregulatetheproteinexpression?

Environmentalchanges

Page 6: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Interactwithoutsideworld

CelllevelMoleculelevel

What’sthebasicproductofcell?

ProteinsGene

Genome

What’sthemostefficientwaytoregulatetheproteinexpression?

EnvironmentalchangesTranscriptionalregulation!Howpercentageisit?

Page 7: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Contributionsofthemajorprocessesthatregulateproteinconcentrations.

Page 8: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Whenisthetranscriptionalregulationimportant?

• Interactwithoutsideworld• ?• Formakingyourownshape…

Developmentalprocess…

Page 9: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

DNAmicroarray

Geneexpressionchangesinmicroarraystudy

Page 10: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Phenotypesofmutationsingenesencodingtranscriptionfactors.

• Improperregulationofmechanismscontrollingtranscriptioncausespathologicalprocesses.

• (a)AhumanHOXD13 genedominantmutation:• polydactyly– developmentofextradigits

• (b)DrosophilaUbx genehomozygousrecessivemutations:

• preventUbx expressioninthethirdthoracicsegment

• transformssegment,whichnormallyhasabalancingorgancalledahaltere,intoasecondcopyofthethoracicsegmentthatdevelopswings

• (c)InactivatingmutationsinbothcopiesofthreeArabidopsisthalianafloralorgan–identitygenes:

• transformthenormalflowerpartsintoleaflike structures

• Mutationsaffectmasterregulatorytranscriptionfactorsthatregulatemultiplegenes,includingmanygenesencodingothertranscriptionfactors.

Page 11: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtoregulatethetranscription?

Page 12: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

TranscriptionalregulationinBacteria

Learningtheprinciples…

Page 13: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

TranscriptionalControlofGeneExpression

9.1ControlofGeneExpressioninBacteria• Prokaryotegeneexpression– regulatedprimarilybymechanismsthatcontrolgenetranscription

• Thelacoperonandsomeotherbacterialgenesareregulatedbyactivatorproteinsthatbindnexttoapromoter andactivateRNApolymerase.

• TranscriptioninitiationbyE.coliRNApolymerasescanberegulatedbyrepressorsandactivatorsthatbindnearorupto100basesupstreamofthetranscriptionstartsite.

• Transcriptioninbacteriacanberegulatedbycontroloftranscriptionalelongationinthepromoter-proximalregion.

Page 14: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Tounderstandthetranscriptionalregulationofanorganism,

• Weshouldknowtheorganism.

• Weshouldknowtheenvironmentaroundtheorganism.

Interaction!

Page 15: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

E.coli

• Escherichiacoli• Escherichiacoli isa gram-negative, facultativelyanaerobic, rod-shaped, coliformbacterium ofthe genus Escherichia thatiscommonlyfoundinthelower intestine of warm-blooded organisms(endotherms)

Symbiosis

Gutflora (gutmicrobiota,or gastrointestinalmicrobiota)isthecomplexcommunityof microorganisms thatliveinthe digestivetracts ofhumansandotheranimals,includinginsects.

Intestinal bacteria alsoplayaroleinsynthesizing vitaminB and vitaminK aswellasmetabolizing bileacids, sterols,and xenobiotics.

Page 16: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

JustlearnabouttheE.coli

• Gram-negative

• Facultatively anaerobic

Gram-negativebacteria areagroupof bacteria thatdonotretainthe crystalviolet stain usedinthe Gramstaining methodofbacterialdifferentiation.

Page 17: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

JustlearnabouttheE.coli

• Gram-negative

• Facultatively anaerobic

Gram-negativebacteria areagroupof bacteria thatdonotretainthe crystalviolet stain usedinthe Gramstaining methodofbacterialdifferentiation.

Page 18: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

JustlearnabouttheE.coli

• Gram-negative

• Facultatively anaerobic

Gram-negativebacteria areagroupof bacteria thatdonotretainthe crystalviolet stain usedinthe Gramstaining methodofbacterialdifferentiation.

A facultativeanaerobe isan organism thatmakes ATP by aerobicrespiration if oxygen ispresent,butiscapableofswitchingto fermentation or anaerobicrespiration ifoxygenisabsent.

Page 19: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RegulationoftranscriptionfromthelacoperonofE.coli.

• E.coliinanenvironmentthatlackslactose:

• E.coliinanenvironmentcontainingbothlactoseandglucose:

• E.coliinanenvironmentcontaininglactosebutlackingglucose:

Page 20: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Lactosemetabolism

Page 21: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RegulationoftranscriptionfromthelacoperonofE.coli.

• E.coliinanenvironmentthatlackslactose:represslacmRNAsynthesissothatcellularenergyisnotwastedsynthesizingunnecessaryenzymes.

• E.coliinanenvironmentcontainingbothlactoseandglucose:cellspreferentiallymetabolizeglucose,thecentralmoleculeofcarbohydratemetabolism.

• E.coliinanenvironmentcontaininglactosebutlackingglucose:cellsmetabolizelactoseatahighrateonlywhenlactoseispresentandglucoseislargelydepletedfromthemedium.

Page 22: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Transcriptionalregulation

• Thinkabouttranscription

HowtoblockthebindingofRNApolymerase?

Howtocontrolthetranscription?1.Blockthetranscription

Howtocontrolthetranscription?1. Blockthetranscription2. Activatethetranscription

Page 23: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Transcriptionalregulation

• Cis-actingelement• Trans-actingelement

Promoter

Protein

Page 24: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RegulationoftranscriptionfromthelacoperonofE.coli.

• CAPsite– bindscataboliteactivatorprotein.• lacpromoter– bindstheσ70-RNApolymerasecomplex

• lacoperator– bindslacrepressor

cAMP-bound cataboliteactivatorprotein(CAP)

Page 25: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RegulationoftranscriptionfromthelacoperonofE.coli.

• Tetramericlacrepressor:bindstotheprimarylacoperator(O1)andoneoftwosecondaryoperators(O2orO3)simultaneously.Thetwostructuresareinequilibrium.

Page 26: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Lacoperon

https://www.youtube.com/watch?v=oBwtxdI1zvk

Page 27: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

• MostE.colipromotersinteractwithσ70-RNApolymerase,themajorformofthebacterialenzyme.

Page 28: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

DNAloopingpermitsinteractionofboundNtrC andσ54-RNApolymerase.

regulatedsolelybyactivatorsthatbindtoenhancersitesgenerallylocated80–160bpupstreamfromthetranscriptionstartsite

• NtrC σ54-activator:• NtrC protein(nitrogenregulatory

proteinC)– stimulatestranscriptionoftheglnA gene

• glnA gene– encodesglutaminesynthetase,whichsynthesizesglutamine,thecentralmoleculeofnitrogenmetabolism,fromglutamicacidandammonia

• NtrC ATPhydrolysis– requiredforactivationofσ54-RNApolymerase

Enhancer

The σ54-RNA polymerase binds to the glnA promoter but does not melt the DNA strands and initiate transcription until it is activated by NtrC, a dimeric protein.

Page 29: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtodetectamountofasubstanceandregulatetheamount?

?

Regulator SubA synthesisenzyme

Page 30: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtodetectasubstanceandregulate?

BindingtoSubA SubA synthesisenzyme

Page 31: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtodetectasubstanceandregulate?

BindingtoSubA SubA synthesisenzyme

Page 32: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtodetectasubstanceandregulate?

BindingtoSubA SubA productiongeneactivator

Production

Activate

Page 33: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Howtodetectasubstanceandregulate?

BindingtoSubA

Production

Activate

Page 34: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Two-componentregulatorysystems.

• Manybacterialresponsesarecontrolledbytwo-componentregulatorysystems.

• (a)Lowcytoplasmicglutamineconcentration:• glutaminedissociatesfromNtrB.• NtrB conformationalchangeactivatesaproteinkinasetransmitterdomainthattransfersanATPγ-phosphatetoaconservedhistidine(H)inthedomain.

• Phosphate– thentransferredtoanasparticacid(D)intheregulatorydomain oftheresponseregulatorNtrC

• PhosphorylationconvertsNtrC intoitsactivatedform,whichbindstheenhancersitesupstreamoftheglnApromoter.

Page 35: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Generaltwo-componentsignalingsystem

• (b)Two-componenthistidyl-aspartylphospho-relayregulatorysystemsinbacteriaandplants– generalorganization

Page 36: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Otherwaytoregulatethetranscription

Page 37: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Transcriptionalregulation

• Transcriptioninitiation,then?

Elongation&Termination

Page 38: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Trp operon

But,stillleakofexpression

Calledas“attenuation”

Howtoblocktheexpressioncompletely?

Page 39: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

TranscriptionalcontrolbyregulationofRNApolymeraseelongationandterminationintheE.colitrp operon.

• Ribosometranslatesquicklythroughregion1intoregion2,blockingregion2basepairingwithregion3.

• Region3basepairswithregion4.• 3–4stem-loopandfollowingseriesofuracils – signal

forterminationofRNApolymerasetranscriptionofrestofoperon

• Region3issequesteredinthe2–3stem-loopandcannotbase-pairwithregion4.

• Transcriptionofthetrp operoncontinues.

1.Nocodingforenzymes(~140nts)

2.Trp-Trp codons

3.

4.Indicatetermination

Page 40: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Riboswitchcontroloftranscriptiontermination inB.subtilis. Bacillussubtilis,knownalsoasthe haybacillus or grassbacillus,is

a Gram-positive, catalase-positive bacterium

xpt-pbuX operon(encodesenzymesinvolvedinpurinesynthesis)

Page 41: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

TranscriptionalControlofGeneExpression

9.2OverviewofEukaryoticGeneControl• Transcriptionalcontrolistheprimarymeansofregulatinggeneexpression

ineukaryotes.• Eukaryotescontainthreetypes ofnuclearRNApolymerases:

– RNApolymeraseIsynthesizesonlypre-rRNA.– RNApolymeraseIIsynthesizesmRNAs,someofthesmallnuclear

RNAsthatparticipateinmRNAsplicing,andmicro- andsmallinterferingRNAs(miRNAs andsiRNAs)thatregulatethetranslationandstabilityofmRNAs.

– RNApolymeraseIIIsynthesizestRNAs,5SrRNA,andseveralothersmallstableRNAs.

Page 42: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Fundamentaldifferencebetweeneukaryoticandprokaryoticchromatin?

• SinglehumancellDNAmeasuresabout2mintotallength,andiscontainedwithinnucleiwithdiametersoflessthan10μm – acompactionratioofgreaterthan105 to1.

• EachchromosomeconsistsofasingleDNAmolecule(aslongas280Mbinhumans),organizedintoincreasinglevelsofcondensationfromnucleosomestohigherorderchromatinfoldingbyhistoneandnonhistone proteins.

• AnygivenportionofhighlycompactedDNAcanbeaccessedfortranscription,replication,andrepairofdamagewithoutthelongDNAmoleculesbecomingtangledorbroken.

• HighereukaryoticDNAconsistsofuniqueandrepeatedsequences:

• Onlyabout1.5percentofhumanDNAencodesproteinsandfunctionalRNAs.

• Theremainderincludesregulatorysequencesthatcontrolgeneexpressionandintrons.

• About45percentofhumanDNAisderivedfrommobileDNAelements,geneticsymbiontsthathavecontributedtotheevolutionofcontemporarygenomes.

Page 43: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Overviewofeukaryotictranscriptionalcontrol.

• Chromatincondensationinactivatesgenetranscription:• BlocksRNApolymerasesandgeneraltranscriptionfactors

frominteractingwithgenepromoters• Repressorproteins:

• Maybindtotranscription-controlelementstoinhibittranscriptioninitiationbyPolII

• Mayinteractwithmultiproteinco-repressorcomplexestocondensechromatin

• Pioneertranscriptionfactor:• Bindstoaspecificregulatorysequencewithinthe

condensedchromatin• Interactswithchromatin-remodelingenzymesandhistone

acetylases thatdecondense thechromatin,makingitaccessibletoRNApolymeraseIIandgeneraltranscriptionfactors.

• Activatorproteins:• Bindtospecifictranscription-controlelementsinboth

promoter-proximalsitesanddistantenhancers• Interactwithoneanotherandwiththemultisubunit

MediatorcomplextoassemblegeneraltranscriptionfactorsandRNApolymeraseII(PolII)onpromoters

• Transcriptionalactivation:• PolIIinitiatestranscription.• PolIIpausesaftertranscribingfewerthan100nucleotides

becauseofactionoftheelongationinhibitorNELF(negativeelongationfactor)associatedwithDSIF(DRBsensitivity-inducingfactor).

• Activators:• PromoteassociationofthePolII-NELF-DSIFcomplexwith

elongationfactorP-TEFb (cyclinT-CDK9[kinase]),whichreleasesNELF

• NELFreleaseallowsresumptionofRNAtranscription.

Page 44: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Pax 6gene

Pax6protein– requiredfordevelopmentoftheeye,certainregionsofthebrainandspinalcord,andthepancreascellsthatsecretehormonessuchasinsulin

regulation at each step m gene expression have been found, control of transcript ion initiation and elongation-the first rwo steps-arc the most important mechanisms for determining whether most genes are expressed and how much of the en-coded mRNAs and, consequently, proteins are produced. The molecular mechanisms that regulate transcription initiation and elongation are critical to numerous biological phenomena, in-cluding the development of a multicellular organism from a single fertilized egg cell as mentioned above, the immune re-sponses that protect us from pathogenic microorganisms, and

(a)

(b)

Haltere

Normal

(c)

FIGURE 7·1 Phenotypes of mutations in genes encoding transcription factors. (a) A mutation that inactivates one copy of the Pax6 gene on either the maternal or paternal chromosome 9 results in failure to develop an iris, or aniridia. (b) Homozygous mutations that prevent expression of the Ubx gene in the third thoracic segment of Drosophila result in transformation of t he third segment, which normally has a balancing organ called a haltere, into a second copy of the thoracic segment that develops wings. (c) Mutations in Arabidopsis

280 CHAPTER 7 • Tran scriptional Control of Gene Expression

neurological processes such as learning and memory. When these regulatory mechanisms contro ll ing transcription function improperly, pathological processes may occur. For example, reduced activity of the Pax6 gene causes aniridia, failure to de-velop an iris (Figure 7-la) . Pax6 is a transcription factor that normally regulates transcription of genes involved in eye devel-opment. In other organisms, mutations in transcription factors cause an extra pair of wings ro develop in Drosophila (Figure 7-1 b), alter the structures of flowers in plants (Figure 7- l c), and are responsible for multiple other developmental abnormalities.

Ubxmutant

thaliana that inactivate both copies of t hree flora l organ-identity transform the normal parts of the f lower into leafl ike structures. In each case, these mutations affect master regulatory transcription factors that regulate multiple genes, including many genes encoding other transcription factors. [Part (a), left, Simon Fraser/Photo Researchers, Inc.; right, Visuals Unlimited. Part (b) from E. B. Lewis, 197B, Nature 276:565. Part (c) from D. Wiegel and E. M. Meyerowiu, 1994, Ce//78:203.]

A mutation that inactivates one copy of the Pax6 gene on either the maternal or paternal chromosome 9 results in failure to develop an urus, or aniridia.

Page 45: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Transcription-controlregionsofthemousePax6geneandtheorthologoushumanPAX6gene

• ThreealternativePax6promoters:• Transcription-controlregions(200–500bp long)regulateexpressionofPax6 atdifferentembryogenesistimesinindifferenttissues.

Page 46: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Betagalactosidase– asareporterfortranscriptionalregulation

Promoter Reporter

B-galactosidase

Page 47: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Experiment:tg mouseexpressingofabeta-galactosidasereportertransgenefusedtodifferentregionsofPas6gene

• Experiment:transgenicmouseexpressionofaβ-galactosidasereportertransgenefusedtodifferentregionsofPax6 gene(stainedwithX-galtorevealβ-galactosidase)

• (b)Embryo10.5daysafterfertilization– 8kbofmouseDNAupstreamfromexon0linkedtoreportertransgene

• Expression– inlenspit(LP)tissuethatwilldevelopintotheeyelensandintissuethatwilldevelopintothepancreas(P)

• (c)Embryo13.5daysafterfertilization– sequencebetweenexons4and5linkedtoβ-galactosidasereportergene

• Expression– Retinaandpancreas

(b)

(c)

Page 48: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

ThehumanSALL1enhanceractivatesexpressionofareportergeneinlimbbudsofthedevelopingmouseembryo

HumanDNAsequence~500kbdownstreamoftheSALL1gene– highlyconservedbetweenhumans,mice,chickens,frog,andfish.

Page 49: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

ThehumanSALL1enhanceractivatesexpressionofareportergeneinlimbbudsofthedevelopingmouseembryo

Beta-galpromoter

Plasmidvector

Page 50: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Luciferase

• Luciferase isagenerictermfortheclassofoxidativeenzymesthatproducebioluminescence,andisdistinctfromaphotoprotein.

Page 51: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

ThreeRNApolymerases

Page 52: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

HowtoseparateRNApolymerases

Page 53: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

LiquidchromatographyseparatesandidentifiesthethreeeukaryoticRNApolymerases,eachwithitsownsensitivityto𝛂-amanitin.

AllthreeRNApolymerasesinaproteinextractfromculturedeukaryoticcellnucleiboundtoanegativelychargedDEAESephadex column

Page 54: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RNApolinhibitor

α-Amanitin (red)boundtoRNApolymeraseIIfrom Saccharomycescerevisiae (brewer'syeast).

α-Amanitin isanselectiveinhibitorof RNApolymeraseII and III. Thismechanismmakesitadeadlytoxin.

interfereswiththetranslocationofRNAandDNAneededtoemptythesiteforthenextroundofRNAsynthesis

Page 55: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

LiquidchromatographyseparatesandidentifiesthethreeeukaryoticRNApolymerases,eachwithitsownsensitivityto𝛂-amanitin.

• RNApolymeraseI:• insensitive• locatedinthenucleolus• transcribesgenesencodingprecursorrRNA (pre-rRNA),whichisprocessedinto28S,5.8S,and18SrRNAs

• RNApolymeraseII:• verysensitive• transcribesallprotein-codinggenestoproducemRNAs

• RNApolymeraseIII:• intermediatesensitivity• transcribesgenesencodingtRNAs,5SrRNA,andanarrayofsmallstableRNAs,includingoneinvolvedinRNAsplicing(U6)andtheRNAcomponentofthesignalrecognitionparticle(SRP)

AllthreeRNApolymerasesinaproteinextractfromculturedeukaryoticcellnucleiboundtoanegativelychargedDEAESephadex column

Page 56: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2
Page 57: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Comparisonofthree-dimensionalstructuresofbacterialandeukaryoticRNApolymerases

• Fourmultisubunit RNApolymeraseshaveasimilaroveralldesign.• EachofthethreeeukaryoticRNApolymerasesismorecomplexthanE.coliRNApolymerase

• (a)BacterialRNApolymerase• (b)EukaryoticRNApolymeraseII(10ofthe12subunitsshowninmodel)• (c)YeastRNApolymeraseII– includingsubunits4and7thatextendfromthecoreportionoftheenzymeshownin(b)neartheregionoftheC-terminaldomainofthelargesubunit

Evolution?

Page 58: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

RNApolIIsubunitsandstructure

https://www.youtube.com/watch?v=GdKfadJGId4

Page 59: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

TheclampdomainofRPBI(RNApolB1=RNApolII).• DiffersfromfreemainlyinthepositionofaclampdomainintheRPB1subunit

• Clampdomainswingsoverthecleftbetweenthejawsofthepolymeraseduringformationofthetranscribingcomplex,trappingthetemplateDNAstrandandtranscript.

• Bindingoftheclampdomaintothe8–9-bpRNA-DNAhybrid– mayhelpcoupleclampclosuretothepresenceofRNA

• Mg2+ion– participatesincatalysisofphosphodiesterbondformation

• RPB2Walldomain– forcesthetemplateDNAenteringthejawsofthepolymerasetobendbeforeitexitsthepolymerase

• Bridgeαhelix:• extendsacrossthecleftinthepolymerase

• ispostulatedtobendandstraightenasthepolymerasetranslocates onebasedownthetemplatestrand

• Nontemplate strand– formsaflexiblesingle-strandedregionabovethecleft(notshown),extendingfromthreebasesdownstreamofthetemplatebase-pairedtothe3ʹbaseofthegrowingRNAtowherethetemplatestrandexitsthepolymerase

Page 60: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

SchematicrepresentationofthesubunitstructureoftheE.coliRNAcorepolymeraseandyeastnuclearRNApolymerases.

Allthreeyeastpolymeraseshavefivecoresubunitshomologoustotheβ,βʹ,twoα,andω subunitsofE.coliRNApolymerase

RNApolymerasesIandIIIcontainthesametwononidentical α-likesubunits,whereasRNApolymeraseIIcontainstwoothernonidentical α-likesubunits.

• RNApolymeraseIIlargestsubunit(RPB1)– alsocontainsanessentialC-terminaldomain(CTD)

Page 61: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

CTDofRNApolII

• RNAPolymeraseIIexistsintwoformsunphosphorylated andphosphorylated,IIAandIIOrespectively.

• ThemethodfortheelongationinitiationisdonebythephosphorylationofSerineatposition5(ser5),viaTFIIH.ThenewlyphosphorylatedSer5recruitsenzymestocapthe5'endofthenewlysynthesizedRNAandthe"3'processingfactorsto poly(A) sites".

Page 62: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

CTDofRNApolIIinaction!Cracking the RNA polymerase II CTD codeSylvain Egloff, Shona Murphy <Find the paper!>

Page 63: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Antibodystainingdemonstratesthatthecarboxy-terminaldomainofRNApolymeraseIIisphosphorylated duringinvivotranscription.

• PhosphorylatedCTD(red)–stainedwithaphosphorylation-specificrabbitantibody

• Nonphosphorylated CTD(green)– stainedwithnonphosphorylation-specificgoatantibody

Whatcanyousee?

Polytene chromosomes areoversized chromosomes whichhavedevelopedfromstandardchromosomesandarecommonlyfoundinthesalivaryglandsof Drosophilamelanogaster.

Page 64: Chapter 9 -Transcriptional Control of Gene Expression · PDF file07.04.2017 · Chapter 9 -Transcriptional Control of Gene Expression 9.1 Control of Gene Expression in Bacteria 9.2

Discussionwithfriends

• PleasefindthefunctionsofRNAs

• SummarizetherolesofCTDinRNAPolII-mediatedtranscription