Chapter 9 Muscles and Muscle Tissue J.F. Thompson, Ph.D. & J.R. Schiller, Ph.D. & G. Pitts, Ph.D

Embed Size (px)

Citation preview

  • Slide 1
  • Chapter 9 Muscles and Muscle Tissue J.F. Thompson, Ph.D. & J.R. Schiller, Ph.D. & G. Pitts, Ph.D.
  • Slide 2
  • Some Muscle Terminology Myology: the scientific study of muscle muscle fibers = muscle cells myo, mys & sarco: word roots referring to muscle
  • Slide 3
  • Three Types of Muscle Skeletal, cardiac, and smooth muscle differ in: Microscopic anatomy Location Regulation by the endocrine system and the nervous system
  • Slide 4
  • Characteristics of Skeletal Muscle Attached primarily to bones Voluntary (conscious) control (usually) Contracts quickly, tires easily (fatigable) Allows for wide range of forces to be generated
  • Slide 5
  • Skeletal Muscle Cells Long, cylindrical cells Striated (banded) Multinucleate
  • Slide 6
  • Characteristics of Cardiac Muscle Forms most of heart wall (myocardium) Involuntary (unconscious) Autorhythmicity (contracts without external stimuli) Fast contraction, non-fatigable Beats at constant rhythm that can be modified by neural and hormonal signals
  • Slide 7
  • Cardiac Muscle Cells Branched cells Uninucleate (may occasionally be binucleate) Striated Intercalated discs
  • Slide 8
  • Characteristics of Smooth Muscle Found in the walls of hollow internal structures (digestive, respiratory, reproductive tracts, blood vessels) Arrector pili, pupil of the eye, etc. Involuntary (unconscious) Long, slow contractions, non-fatigable
  • Slide 9
  • Smooth Muscle Cells Nonstriated = smooth Uninucleate
  • Slide 10
  • Functions of Muscle Tissue Motion: external (walking, running, talking, looking) and internal (heartbeat, blood pressure, digestion, elimination) body part movements Posture: maintain body posture Stabilization: stabilize joints muscles have tone even at rest Thermogenesis: generating heat by normal contractions and by shivering
  • Slide 11
  • Functional Characteristics Excitability (irritability) the ability to receive and respond to a stimulus (chemical signal molecules) Contractility ability of muscle tissue to shorten Extensibility the ability to be stretched without damage most muscles are arranged in functionally opposing pairs as one contracts, the other relaxes, which permits the relaxing muscle to be stretched back Elasticity the ability to return to its original shape Conductivity (impulse transmission) the ability to conduct excitation over length of muscle
  • Slide 12
  • Connective Tissue Wrappings of Skeletal Muscle Tissue Superficial Fascia: "hypodermis" Deep Fascia: lines body walls & extremities; binds muscle together, separating them into functional groups Epimysium: wraps an entire muscle Perimysium: subdivides each muscle into fascicles, bundles of 10-100 muscle fibers Endomysium: wraps individual muscle fibers
  • Slide 13
  • Nerve and Blood Supply Each muscle fiber is supplied by a branch of a motor nerve Each muscle is supplied by its own arteries and veins Blood vessels branch profusely to provide each muscle fiber with a direct blood supply
  • Slide 14
  • Attachments (to bone) Origin: the part of a muscle attached to the stationary bone (relative to a particular motion) Insertion: the part of a muscle attached to the bone that moves (relative to a particular motion) Attachments are extensions of connective tissue sheaths beyond a muscle, attaching it to other structures Direct attachment: epimysium fused to periosteum
  • Slide 15
  • Attachment Structure Indirect attachment: connective tissue wrappings gathered into a tendon or aponeurosis which attaches to an origin or insertion on bone Tendon: cord (of dense regular connective tissue) Aponeurosis: sheet (of dense regular connective tissue)
  • Slide 16
  • Microscopic Anatomy of A Skeletal Muscle Fiber Muscle fibers (cells): long, cylindrical, and multinucleate (individual muscle cells fuse during embryonic development) Sarcolemma: the cell membrane of a muscle fiber myoglobinSarcoplasm: the cytoplasm of a muscle fiber, rich in oxygen-storing myoglobin protein
  • Slide 17
  • Myofibrils of A Skeletal Muscle Fiber myofilamentsMyofibrils: bundles of contractile protein filaments (myofilaments) arranged in parallel, fill most of the cytoplasm of each muscle fiber; 100s to 1000s per cell Sarcomeres: the repeating unit of contraction in each myofibril
  • Slide 18
  • Organelles of A Skeletal Muscle Fiber Mitochondria: provide the ATP required for contraction Sarcoplasmic reticulum (smooth ER): stores Ca 2+ ions which serve as second messengers for contraction
  • Slide 19
  • Striations/Sarcomeres sarcomeresZ discs (lines): the boundary between sarcomeres; proteins anchor the thin filaments; bisects each I band A (anisotropic) band: overlap of thick (myosin) filaments & thin filaments I (isotropic) band: thin (actin) filaments only H zone: thick filaments only M line: proteins anchor the adjacent thick filaments
  • Slide 20
  • Myofilaments Thin filaments: actin (plus some tropomyosin & troponin) Thick filaments: myosin Elastic filaments: titin (connectin) attaches myosin to the Z discs (very high mol. wt.)
  • Slide 21
  • Sarcomeres Components of the muscle fiber with myofilaments arranged into contractile units The functional unit of striated muscle contraction Produce the visible banding pattern (striations) The myofilaments between two successive z discs
  • Slide 22
  • Summary of Muscle Structure
  • Slide 23
  • Myosin Protein Rod-like tail with two heads Each head contains ATPase and an actin-binding site; point to the Z line Tails point to the M line Splitting ATP releases energy which causes the head to ratchet and pull on actin fibers
  • Slide 24
  • Thick (Myosin) Myofilaments Each thick filament contains many myosin units woven together
  • Slide 25
  • Thin (Actin) Myofilaments Two G actin strands are arranged into helical strands Each G actin has a binding site for myosin Two tropomyosin filaments spiral around the actin strands Troponin regulatory proteins (switch molecules) may bind to actin and tropomyosin & have Ca 2+ binding sites
  • Slide 26
  • Muscle Fiber Triads Triads: 2 terminal cisternae + 1 T tubule Sarcoplasmic reticulum (SER): modified smooth ER, stores Ca 2+ ions Terminal cisternae: large flattened sacs of the SER Transverse (T) tubules: inward folding of the sarcolemma
  • Slide 27
  • Regulation of Contraction & The Neuromuscular Junction The Neuromuscular Junction: Where motor neurons communicate with the muscle fibers Composed of an axon terminal & motor end plate Axon terminal: end of the motor neurons branches (axon) Motor end plate: the specialized region of the muscle cell plasma membrane adjacent to the axon terminal
  • Slide 28
  • The Neuromuscular Junction: Synapse: point of communication is a small gap Synaptic cleft: the space between axon terminal & motor end plate Synaptic vesicles: membrane-enclosed sacs in the axon terminals containing the neurotransmitter
  • Slide 29
  • The Neuromuscular Junction: Neurotransmitter: the chemical that travels across the synapse, i.e., acetylcholine, ACh) Acetylcholine (ACh) receptors: integral membrane proteins which bind ACh
  • Slide 30
  • axonal terminal motor end plate Generation of an Action Potential (Excitation) Binding of neurotransmitter (ACh) causes the ligand-gated Na + channels to open Opening of the Na + channels depolarizes the sarcolemma (cell membrane)
  • Slide 31
  • Generation of an Action Potential Initial depolarization causes adjacent voltage- gated Na + channels to open; Na + ions flow in, beginning an action potential Action potential: a large transient depolarization of the membrane potential transmitted over the entire sarcolemma (and down the T tubules)
  • Slide 32
  • Generation of an Action Potential Repolarization: the return to polarization due to the closing voltage-gated Na + channels and the opening of voltage gated K + channels Refractory period: the time during membrane repolarization when the muscle fiber cannot respond to a new stimulus (a few milliseconds) All-or-none response: once an action potential is initiated it results in a complete contraction of the muscle cell
  • Slide 33
  • Excitation-Contraction Coupling The action potential (excitation) travels over the sarcolemma, including T- tubules DHP receptors serve as voltage sensors on the T- tubules and cause ryanodine receptors on the SR to open and release Ca 2+ ions And now, for the interactions between calcium and the sarcomere
  • Slide 34
  • The Sliding Filament Model of Muscle Contraction Thin and thick filaments slide past each other to shorten each sarcomere and, thus, each myofibril The cumulative effect is to shorten the muscle
  • Slide 35
  • http://www.lab.anhb.uwa.edu.au/mb140/CorePages/Muscle/Muscle.htm#SKELETAL This simulation of the sliding filament model can also be viewed on line at the web site below along with additional information on muscle tissue
  • Slide 36
  • Calcium (Ca 2+ ) The on-off switch: allows myosin to bind to actin off on
  • Slide 37
  • Calcium Movements Inside Muscle Fibers Action potential causes release of Ca 2+ ions (from the cisternae of the SR) Ca 2+ combines with troponin, causing a change in the position of tropomyosin, allowing actin to bind to myosin and be pulled (slide) Ca 2+ pumps on the SR remove calcium ions from the sarcoplasm when the stimulus ends
  • Slide 38
  • The Power Stroke & ATP 1.Cross bridge attachment. myosin binds to actin 2.The working stroke. myosin changes shape (pulls actin toward it); releases ADP + P i 3.Cross bridge detachment. myosin binds to new ATP; releases actin
  • Slide 39
  • The Power Stroke & ATP 4. "Cocking" of the myosin head. ATP hydrolyzed (split) to ADP + P i ; provides potential energy for the next stroke
  • Slide 40
  • The Ratchet Effect Repeat steps 1-4: The ratchet action repeats the process, shortening the sarcomeres and myofibrils, until Ca 2+ ions are removed from the sarcoplasm or the ATP supply is exhausted Attach Power Stroke Release Repeat
  • Slide 41
  • RATCHET EFFECT ANIMATION http://www.sci.sdsu.edu/movies/actin_myosin_gif.html
  • Slide 42
  • Excitation-Contraction Coupling 1.The action potential (excitation) travels over the sarcolemma, including T- tubules 2.DHP receptors serve as voltage sensors on the T- tubules and cause ryanodine receptors on the SR to open and release Ca 2+ ions 3.Ca 2+ binds to troponin, causing tropomyosin to move out of its blocking position 4.Myosin forms cross bridges to actin, the power stroke occurs, filaments slide, muscle shortens 5.Calsequestrin and calmodulin help regulate Ca 2+ levels inside muscle cells
  • Slide 43
  • Destruction of Acetylcholine Acetylcholinesterase: an enzyme that rapidly breaks down acetylcholine is located in the neuromuscular junction Prevents continuous excitation (generation of more action potentials) Many drugs and diseases interfere with events in the neuromuscular junction Myasthenia gravis: loss of function at ACh receptors (autoimmune disease?) Curare (poison arrow toxin): binds irreversibly to and blocks the ACh receptors
  • Slide 44
  • MUSCLE CONTRACTION One power stroke shortens a muscle about 1% Normal muscle contraction shortens a muscle by about 35% Cross bridge (ratchet effect) cycle repeats continue repeating power strokes, continue pulling increasing overlap of fibers; Z lines come together About half the myosin molecules are attached at any time Cross bridges are maintained until Ca 2+ levels decrease Ca 2+ released in response to action potential delivered by motor neuron Ca 2+ ATPase Ca 2+ ATPase pumps Ca 2+ ions back into the SR
  • Slide 45
  • RIGOR MORTIS IN DEATH Ca 2+ ions leak from SR causing binding of actin and myosin and some contraction of the muscles Lasts ~24 hours, then enzymatic tissue disintegration eliminates it in another 12 hours
  • Slide 46
  • Skeletal Muscle Motor Units The Motor Unit = Motor Neuron + Muscle Fibers to which it connects (Synapses)
  • Slide 47
  • Skeletal Muscle Motor Units The size of Motor Units varies: Small - two muscle fibers/unit (larynx, eyes) Large hundreds to thousands/unit (biceps, gastrocnemius, lower back muscles) The individual muscle cells/fibers of each unit are spread throughout the muscle for smooth efficient operation of the muscle as a whole
  • Slide 48
  • The Myogram Myogram: a recording of muscle contraction Stimulus: nerve impulse or electrical charge Twitch: a single contraction of all the muscle fibers in a motor unit (one nerve signal)
  • Slide 49
  • Myogram 1.Latent period: delay between stimulus and response 2.Contraction phase: tension or shortening occurs 3.Relaxation phase: relaxation or lengthening
  • Slide 50
  • Muscle Twitches All or none rule: All the muscle fibers of a motor unit contract all the way when stimulated
  • Slide 51
  • Graded Muscle Responses Force of muscle contraction varies depending on need. How much tension is needed? Twitch does not provide much force Contraction force can be altered in 3 ways: 1. changing the frequency of stimulation (temporal summation) 2. changing the stimulus strength (recruitment) 3. changing the muscles length
  • Slide 52
  • Temporal Summation Temporal (wave) summation: contractions repeated before complete relaxation, leads to progressively stronger contractions unfused (incomplete) tetanus: frequency of stimulation allows only incomplete relaxation fused (complete) tetanus: frequency of stimulation allows no relaxation
  • Slide 53
  • Treppe: the staircase effect warming up of a muscle fiber
  • Slide 54
  • Multiple Motor Unit Summation ( Recruitment) The stimulation of more motor units leads to more forceful muscle contraction
  • Slide 55
  • The Size Principle As stimulus intensity increases, motor units leads with larger fibers are recruited
  • Slide 56
  • Stretch: Length-Tension Relationship Stretch (sarcomere length) determines the number of cross bridges extensive overlap of actin with myosin: less tension optimal overlap of actin with myosin: most tension reduced overlap of actin with myosin: less tension Optimal overlap: most cross bridges available for the power stroke and least structural interference more resistance most cross bridges/least resistance fewest cross bridges
  • Slide 57
  • Stretch: Length-Tension Relationship Optimal length - L o maximum number of cross bridges no overlap of actin fibers from opposite ends of the sarcomere normal working muscle range from 70 - 130% of L o
  • Slide 58
  • Contraction of a Skeletal Muscle Isometric Contraction: Muscle does not shorten Tension increases
  • Slide 59
  • Contraction of a Skeletal Muscle Isotonic Contraction: tension does not change Muscle (length) shortens
  • Slide 60
  • Regular small contractions caused by spinal reflexes Respond to tendon stretch receptor sensory input Activate different motor units over time Provide constant tension development muscles are firm but no movement e.g., neck, back and leg muscles maintain posture Muscle Tone
  • Slide 61
  • Muscle Metabolism Energy availability Not much ATP is available at any given moment ATP is needed for cross bridges and Ca 2+ removal Maintaining ATP levels is vital for continued activity Three ways to replenish ATP: 1. Creatine Phosphate energy storage system 2. Anaerobic Glycolysis -- Lactic Acid system 3. Aerobic Respiration
  • Slide 62
  • CrP stored in cell Allows for rapid ATP replenishment Only a small amount available (10-30 seconds worth) Direct Phosphorylation Creatine Phosphate System
  • Slide 63
  • Anaerobic Glycolysis Lactic Acid System Anaerobic system - no O 2 required Very inefficient, does not create much ATP Only useful in short term situations (30 sec - 1 min) Produces lactic acid as a by-product
  • Slide 64
  • Aerobic System -Uses oxygen for ATP production -Oxygen comes from the RBCs in the blood and the myoglobin storage depot -Uses many substrates: carbohydrates, lipids, proteins -Good for long term exercise -May provide 90-100% of the needed ATP during these periods
  • Slide 65
  • Summary of Muscle Metabolism
  • Slide 66
  • Oxygen Debt The amount of oxygen needed to restore muscle tissue (and the body) to the pre-exercise state Muscle O 2, ATP, creatine phosphate, and glycogen levels, and a normal pH must be restored after any vigorous exercise Circulating lactic acid is converted/recycled back to glucose by the liver
  • Slide 67
  • Factors Affecting the Force of Contraction 1.Number of muscle fibers contracting (recruitment) 2. Size of the muscle 3.Frequency of stimulation 4.Degree of muscle stretch when the contraction begins
  • Slide 68
  • Muscle Fiber Type: Speed of Contraction Slow oxidative fibers contract slowly, have slow acting myosin ATPases, and are fatigue resistant (red) Fast oxidative fibers contract quickly, have fast myosin ATPases, and have moderate resistance to fatigue Fast glycolytic fibers contract quickly, have fast myosin ATPases, and are easily fatigued (white)
  • Slide 69
  • Force, Velocity, and Duration of Muscle Contraction
  • Slide 70
  • Smooth Muscle Tissue When the longitudinal layer contracts, the organ dilates and contracts When the circular layer contracts, the organ elongates
  • Slide 71
  • Smooth Muscle Contractions Peristalsis alternating contractions and relaxations of smooth muscles that squeeze substances through the lumen of hollow organs Segmentation contractions and relaxations of smooth muscles that mix substances in the lumen of hollow organs Peristalsis Animation
  • Slide 72
  • Contraction of Smooth Muscle Some smooth muscle cells: Act as pacemakers and set the contractile pace for whole sheets of muscle Are self-excitatory and depolarize without external stimuli Whole sheets of smooth muscle exhibit slow, synchronized contraction They contract in unison, reflecting their electrical coupling with gap junctions Action potentials are transmitted from cell to cell
  • Slide 73
  • Smooth Muscle Tissue Contracts under the influence of: Autonomic nerves Hormones Local factors
  • Slide 74
  • Developmental Aspects of the Muscular System Muscle tissue develops from embryonic mesoderm called myoblasts (except the muscles of the iris of the eye and the arrector pili muscles in the skin) Multinucleated skeletal muscles form by fusion of myoblasts The growth factor agrin stimulates the clustering of ACh receptors at newly forming motor end plates As muscles are brought under the control of the somatic nervous system, the numbers of fast and slow fibers are also determined Cardiac and smooth muscle myoblasts do not fuse but develop gap junctions at an early embryonic stage
  • Slide 75
  • Regeneration of Muscle Tissue Cardiac and skeletal muscle become amitotic, but can lengthen and thicken Myoblast-like satellite cells show very limited regenerative ability Satellite (stem) cells can fuse to form new skeletal muscle fibers Cardiac cells lack satellite cells Smooth muscle has good regenerative ability
  • Slide 76
  • Developmental Aspects: After Birth Muscular development reflects neuromuscular coordination Development occurs head-to-toe, and proximal-to-distal Peak natural neural control of muscles is achieved by midadolescence Athletics and training can improve neuromuscular control
  • Slide 77
  • Developmental Aspects: Male and Female There is a biological basis for greater strength in men than in women Womens skeletal muscle makes up 36% of their body mass Mens skeletal muscle makes up 42% of their body mass
  • Slide 78
  • Developmental Aspects: Male and Female These differences are due primarily to the male sex hormone testosterone With more muscle mass, men are generally stronger than women Body strength per unit muscle mass, however, is the same in both sexes
  • Slide 79
  • Developmental Aspects: Age Related With age, connective tissue increases and muscle fibers decrease Muscles become stringier and more sinewy By age 80, 50% of muscle mass is lost (sarcopenia) Regular exercise reverses sarcopenia Aging of the cardiovascular system affects every organ in the body Atherosclerosis may block distal arteries, leading to intermittent claudication and causing severe pain in leg muscles
  • Slide 80
  • Homeostatic Imbalances Muscular dystrophy group of inherited muscle- destroying diseases where muscles enlarge due to fat and connective tissue deposits, but muscle fibers atrophy.
  • Slide 81
  • Homeostatic Imbalances Duchenne Muscular Dystrophy: Inherited lack of functional gene for formation of a protein, dystrophin, that helps maintain the integrity of the sarcolemma Onset in early childhood, victims rarely live to adulthood
  • Slide 82
  • End Chapter 9
  • Slide 83
  • Cardiac Muscle Tissue Striated Unicellular Branched Intercalated discs
  • Slide 84
  • Intercalated Discs Desmosomes connect cells Gap junctions Electrical synapses Excitation spreads rapidly
  • Slide 85
  • Smooth Muscle Composed of spindle-shaped fibers with a diameter of 2-10 m and lengths of several hundred m Lack the coarse connective tissue sheaths of skeletal muscle, but have fine endomysium Organized into two layers (longitudinal and circular) of closely apposed fibers Found in walls of hollow organs (except the heart) Have essentially the same contractile mechanisms as skeletal muscle
  • Slide 86
  • Smooth Muscle Tissue No striations (no sarcomeres) Uninucleate Spindle-shaped Involuntary May be autorhythmic May have gap junctions
  • Slide 87
  • Series Elastic Elements All of the noncontractile structures of a muscle: Connective tissue coverings and tendons Elastic elements of sarcomeres Internal load: force generated by myofibrils on the series elastic elements External load: force generated by series elastic elements on load