9
Slide 1 © 2011 Cengage Learning Engineering. All Rights Reserved. 7 - 1 Chapter 7: Mechanical Properties: Part Two Chapter 7: Mechanical Properties: Part Two ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 © 2011 Cengage Learning Engineering. All Rights Reserved. 7 - 2 Learning Objectives 1. Fracture mechanics 2. The importance of fracture mechanics 3. Microstructural features of fracture in metallic materials 4. Microstructural features of fracture in ceramics, glasses, and composites 5. Weibull statistics for failure strength analysis 6. Fatigue 7. Results of the fatigue test Chapter 7: Mechanical Properties: Part Two ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 3 © 2011 Cengage Learning Engineering. All Rights Reserved. 7 - 3 Learning Objectives 8. Application of fatigue testing 9. Creep, stress rupture, and stress corrosion 10. Evaluation of creep behavior 11. Use of creep data Chapter 7: Mechanical Properties: Part Two ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Chapter 7: 7 - 1 features of fracture in metallic materials 4. Microstructural features of fracture in ceramics, ... Figure 7.1 - Fracture Mechanics Chapter 7:

Embed Size (px)

Citation preview

Slide 1

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 1

Chapter 7:

Mechanical Properties:

Part Two

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 2

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 2

Learning Objectives

1. Fracture mechanics

2. The importance of fracture mechanics

3. Microstructural features of fracture in metallic materials

4. Microstructural features of fracture in ceramics, glasses, and composites

5. Weibull statistics for failure strength analysis

6. Fatigue

7. Results of the fatigue test

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 3

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 3

Learning Objectives

8. Application of fatigue testing

9. Creep, stress rupture, and stress corrosion

10. Evaluation of creep behavior

11. Use of creep data

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 4

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 4

Fracture Mechanics

Fracture mechanics: Discipline concerned with the behavior of materials containing cracks or other small flaws.

Fracture toughness: Measures the ability of a material containing a flaw to withstand an applied load.

The stress applied to the material is intensified at the flaw, which acts as a stress raiser. For a simple case, the stress intensity factor K is given by:

wheref geometry factor for the specimen and flaw the applied stress

a flaw size

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 5

© 2011 Cengage Learning Engineering. All Rights Reserved. 7 - 5

Figure 7.1 - Fracture Mechanics

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 6

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 6

The Importance of Fracture Mechanics

Selection of a material

If the flaw size a and the magnitude of the stresses are known, we can select a material of fracture toughness Kc or KIc to prevent the flaw from growing.

Design of a component

If the maximum size of any flaw and the material is known (and therefore its Kc or KIc has already been selected), the maximum stress that can be supported by the component can be calculated.

Design of a manufacturing or testing method

If the material has been selected, the applied stress is known, and the size of the component is fixed, the maximum size of a tolerable flaw can be calculated.

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 7

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 7

Figure 7.3

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 8

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 8

The Importance of Fracture Mechanics

Brittle fracture Any crack or imperfection limits the ability of a ceramic to

withstand a tensile stress. This is because a crack (sometimes called a Griffith flaw) concentrates and magnifies the applied stress.

wherea length of a surface crackr crack radius

wherea length of a surface crack surface energy

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 9

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 9

Figure 7.5

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 10

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 10

Chapter 7: Mechanical Properties: Part Two

Figure 7.10

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 11

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 11

Chapter 7: Mechanical Properties: Part Two

Figure 7.11

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 12

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 12

Figure 7.12

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 13

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 13

Weibull Statistics for Failure StrengthAnalysis

Chapter 7: Mechanical Properties: Part Two

Fatigue Lowering of strength or failure of a material due to repetitive stress that may be above or below the yield strength

Probability that the material will not fail under a applied stress

Probability of failure F(Vo) = 1 – P(Vo)

Weibull modulus (m) Measure of the variability of the strength of the material

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 14

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 14

Figure 7.16

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 15

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 15

Figure 7.17

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 16

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 16

Figure 7.18 - Geometry for the Rotating Cantilever Beam Specimen Setup

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 17

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 17

Figure 7.19 - The Stress-Number of Cycles to Failure (S-N) Curves for a Tool Steel and an

Aluminum Alloy

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 18

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 18

Application of Fatigue Testing

Chapter 7: Mechanical Properties: Part Two

Mean stress

Stress amplitude

Goodman relationship

fs desired fatigue strength for zero mean stress

UTS tensile strength of the material

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 19

© 2011 Cengage Learning Engineering. All Rights Reserved. 7 - 19

Figure 7.21

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 20

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 20

Application of Fatigue Testing

Chapter 7: Mechanical Properties: Part Two

Stress intensity factor

Number of cycles required for fracture to occur:

ai initial flaw sizeac flaw size required for fracture

Effects of temperature As the material’s temperature increases, both fatigue life and

endurance limit decrease.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 21

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 21

Creep, Stress Rupture, and StressCorrosion

Creep: Time dependent permanent deformation under a constant load or constant stress and at high temperatures.

Stress corrosion

Phenomenon in which materials react with corrosive chemicals in the environment, leading to the formation of cracks and lowering of strength.

Tempering produces an overall compressive stress on the surface of glass.

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 22

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 22

Figure 7.24

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 23

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 23

Figure 7.25

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 24

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 24

Figure 7.26

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 25

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 25

Evaluation of Creep Behavior

Chapter 7: Mechanical Properties: Part Two

Creep rate = strain

time

Combined influence of applied stress and temperature on the creep rate and rupture time (tr) follows an Arrhenius relationship

where

R gas constant

T temperature in kelvin

C, K, n, and m constants for the material

Qc activation energy for creep

Qr activation energy for rupture

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 26

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 26

Figure 7.27 - Results From a Series of Creep Tests

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 27

© 2011 Cengage Learning Engineering. All Rights Reserved.7 - 27

Key Terms

Fracture mechanics

Fracture toughness

Griffith flaw

Transgranular

Microvoids

Intergranular

Chevron pattern

Delamination

Weibull distribution

Weibull modulus (m)

Beach or clamshell marks

Striations

Rotating cantilever beam test

Wöhler curve (S-N curve)

Endurance limit

Fatigue life

Fatigue strength

Shot peening

Tempering

Creep

Creep test

Creep rate

Rupture time

Stress-rupture curve

Chapter 7: Mechanical Properties: Part Two

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________