Chapter 6 Entropy Ppt

Embed Size (px)

DESCRIPTION

ppt entropy

Citation preview

  • 5/25/2018 Chapter 6 Entropy Ppt

    1/56

    Chapter 6ENTROPY

    Assoc.Prof.Sommai Priprem, PhD.

    Department of Mechanical EngineeringKhon Kaen University

    Reference: Sonntag R.E., and an !ylen ".#.,Introduction toThermodynamics: $lassical and Statistical, %rdEd., #ohn !iley & Sons, '(('

  • 5/25/2018 Chapter 6 Entropy Ppt

    2/56

    .. 2

    Introduction

    Last chapter: 2ndLaw apply to CYCLE

    This chapter: 2ndLaw apply to PROCESS

    stlaw deal with Ener!y and itsConser"ation

    2ndlaw deal with Entropy# it is notconser"ed

  • 5/25/2018 Chapter 6 Entropy Ppt

    3/56

    .. $

    Topics

    Ine%uality o& Clausius Entropy Entropy o& pure su'stances Entropy Chan!e durin! Re"ersi'le Process Two I(portant ther(odyna(ic Relations Principle o& Increase o& Entropy Entropy chan!e o& solids and Li%uids

    Entropy chan!e o& ideal !ases Isentropic Process o& Ideal )ases Second Law E&&iciency and Isentropic E&&iciency

  • 5/25/2018 Chapter 6 Entropy Ppt

    4/56

    .. *

    Ine%uality o& CL+,SI,S

    Consider a Re"ersi'le -eat En!ineTheory: .L/ 01 .-.L3 4re"

    T-and TL3 constant

    0 TQ

    HeatEngine

    Source, TH

    Sink, TL

    Wrev

    QH

    QL

    0...

    0:....

    0

    =

    ==

    ==

    =

    T

    Qcyclereversibleafor

    T

    Q

    T

    Q

    T

    QTherefore

    T

    Q

    T

    Q

    T

    Q

    T

    QFrom

    QQQ

    L

    L

    H

    H

    L

    L

    H

    H

    L

    L

    H

    H

    LH

    L

    L

    H

    H

    T

    Q

    T

    Q

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    5/56

    .. 5

    Now consider an Irre"ersi'le -eat En!ine which operates 'etween the sa(eT-and TLand recei"es the sa(e .-'ut reects .L7 and produce 4irr

    Theory: 4irr 84re" 1 .-.7L3 4irrthere&ore .7L / .L

    HeatEngine

    Source, TH

    Sink, TL

    Wirr

    QH

    QL

    )1.6(0....

    0...

    0:....

    0

    '

    '

  • 5/25/2018 Chapter 6 Entropy Ppt

    6/56

    .. 6

    ENTROPY: + Property o& a Syste(

    C

    B

    A

    1

    2

    Consider Two Re"ersi'le Cycles +9 and +C

    )3.6...(..........

    )2.6.........(

    ............

    0;.

    0;.

    0..

    2

    112

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    rev

    rev

    CB

    CA

    BA

    T

    QSS

    T

    QdSDefined

    PROPERTYPATHonnob!saefinalandiniialonde"endsermThis

    T

    Q

    T

    Q

    T

    Q

    T

    Q

    T

    QCACycle

    T

    Q

    T

    Q

    T

    QBACycle

    T

    Qcyclerevfor

    =

    =

    =

    +

    ==

    +

    ==

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    7/56

    ..

    Notes re!ardin! e%n 6;2

    Re"ersi'le Process Irre"ersi'le process entropychan!e

    entropy chan!e ! statepoint "# 2

    Process #"#!! State 2 entropychan!e $ Process Re"ersi'le %$ Irre"ersi'le Process !&Entropy Property

  • 5/25/2018 Chapter 6 Entropy Ppt

    8/56

    .. >

    The Entropy o& a Pure Su'stance

    re&erence "alue : assi!ned s& 4ater s&3 0 at 0;0

    oC

    Re&ri!erants s&3 0 at *0o

    C ?eter(ine "alues the sa(e way as

    Other properties1 u# h

    See Ta'les @ollier dia!ra(: Ts and hs dia!;

  • 5/25/2018 Chapter 6 Entropy Ppt

    9/56

    .. A

    @ollier dia!ra(

    )*s diagram

    h*s diagram

  • 5/25/2018 Chapter 6 Entropy Ppt

    10/56

    .. 0

    Entropy Chan!e in Re"ersei'le Process

    ==

    ===

    ==

    =

    3

    2

    3

    232

    212

    1

    2

    112

    2

    112

    1

    11

    )2.6(

    TdsQm

    #

    T

    h

    T

    #Q

    mTT

    Q

    msss

    T

    QSSe#from

    f$

    rev

    f$

    rev

    T

    s

    P

    s1

    1

    s2

    s3

    2

    3

    Example: -eatin! sat; li%uid superheated "apor

    Process 1-2phase chan!e sat;li% sat;"ap;# T 3constant

    Inte!rate and apply st law

    % 3 h2h3 h&!

    Process 2-3sat; "apor superheated "apor# Tnot constant# need relation 'etween T and . toper&or( inte!ration

  • 5/25/2018 Chapter 6 Entropy Ppt

    11/56

    ..

    System: R*'+.

    nitial state: )'- satrated vapor/ state fi0ed. 1inal state: P+2no3n.

    Process: Reversi4le and adia4atic.

    Model: R*'+ ta4les.

    Analysis:

    1irst la3, adia4atic:

    '5+6 +7 '8 '3+6 9

    '3+6 '*+

    Second la3, reversi4le and adia4atic:

    s'6 s+

    Example 8.1 Consider a cylinder &itted with a piston that containssaturate R2 "apor at 0C; Let this "apor 'e co(pressed in are"ersi'le adia'atic process until the pressure is ;6 @Pa; ?eter(inethe worB per Bilo!ra( o& R2 &or this process;

    T

    ss1=s

    2

    1

    2

    P

    P2

  • 5/25/2018 Chapter 6 Entropy Ppt

    12/56

    .. 2

    Solution

    ro( the R2 ta'les#

    u3 66;*0 BDB!

    s3 s23 0;0* BDB!FP23 ;6 @Pa

    There&ore# &ro( the superheat ta'les &or R2#

    T23 2;2GC# u23 200;5 BDB!;

    w23 uH u2 3 66;*0 200;5 BDB!

    3 $*; BDB!

  • 5/25/2018 Chapter 6 Entropy Ppt

    13/56

    .. $

    Two I(portant Ther(odyna(ics Relations

    Consider a internally re"ersi'le CLOSE? syste(1 st Law

    . 3 d, J 4

    TdS 3 d, JPdK T ds = du + Pdv ;;;;;;;;;

  • 5/25/2018 Chapter 6 Entropy Ppt

    14/56

    ..

    *

    Principle o& Increase o& Entropy

    )8.6(0

    )7.6(0

    )6.6(0

    11,

    11

    ;

    0

    0

    0

    0

    0

    +=

    +=

    >

    +=

    =

    $ss!rro!ndinsysem$eneraion

    isolae

    $ss!rro!ndinsysemne

    $ss!rro!ndinsysemne

    $ss!rro!ndinsysem

    dSdSdSDefined

    dS

    dSdSdS

    Posiiveal%aysTT

    henTTSince

    TTQ

    T

    Q

    T

    QdSdSdS

    T

    QdS

    T

    QdS

    Surroundings,temperature = T

    S!stem,temperature = T

    W

    Q

  • 5/25/2018 Chapter 6 Entropy Ppt

    15/56

    ..

    5

    So(e Re(arBs a'out Entropy

    Processes will occur only i& StotalM 0

  • 5/25/2018 Chapter 6 Entropy Ppt

    16/56

    ..

    6

    Principle o& Increase o& Entropy

    SisolatedM 0

    S!en3Stotal3Ssyste(JSsurroundin!sM 0 / 0 Irre"ersi'le process

    3 0 Re"ersi'le process

    8 0 I(possi'le

  • 5/25/2018 Chapter 6 Entropy Ppt

    17/56

    ..

    S 3

  • 5/25/2018 Chapter 6 Entropy Ppt

    18/56

    ..

    >

    E!"#P$E 8.2 Suppose that B! o& saturated water "apor at00GC is condensed to a saturated li%uid at 00GC in a constantpressure process 'y heat trans&er to the surroundin! air# which isat 25GC; 4hat is the net increase in entropy o& the syste( plussurroundin!sQ

    Solution

    or the syste(# &ro( the stea( ta'les#

    Ssyste( 3 (s&!3 6;0*>0 3 6;0*>0 BDF

    Concernin! the surroundin!s# we ha"e

    . to surroundin!s 3 (h&!3 225;0 3 225 BD

    Ssurr 3 .To3 2A>;52A>;5 3 ;500 BDF

    Snet 3 Ssyste( JSsurr 3 6;0*>0 J ;500

    3 ;5220 BDF

    )his increase in entropy is in accordance 3ith the principle of the increase

    of entropy, and tells s, as does or e0perience, that this process can ta2e place.

  • 5/25/2018 Chapter 6 Entropy Ppt

    19/56

    ..

    A

    Entropy Chan!e o& a Solid or Li%uid

    Solid Li%uid

    Speci&ic -eat 3 Constant

    K "ery s(all hu %

    ds 3

  • 5/25/2018 Chapter 6 Entropy Ppt

    20/56

    ..

    20

    EXAMPLE 8.3 One kilogra o! li"#i$ %a&er i' (ea&e$ !ro 20)* &o +0)*.

    *al#la&e &(e en&ro- (ange, a''#ing on'&an& '-ei!i (ea&, an$ o-are

    &(e re'#l& %i&( &(a& !o#n$ %(en #'ing &(e '&ea &a/le'.

    System: 4ater;nitial and final states: Fnown;Model: Constant speci&ic heat# "alue at roo( te(perature;

    Solutionor constant speci&ic heat#

    s2s3 *;>* ln A5> BDB!F

    Co(parin! calculation &ro( "alue &ro( ta'le:

    s2s3 s&A0C s&20C 3 ;A25 H 0;2A66 3 0;>A5> BDB!F

  • 5/25/2018 Chapter 6 Entropy Ppt

    21/56

    ..

    2

    Entropy Chan!e o& an Ideal )as

    )12.6...(ln

    )11.6...(,

    ,

    )10.6...(ln

    )+.6...(,

    2

    11

    212

    2

    11

    212

    =

    =

    ===

    +=

    +=

    ==+=

    P

    PR

    T

    dTCss

    P

    dPR

    T

    dTCdsherefore

    PRTvanddTCdh$as&deal

    vdPdhTdsfrom

    Similarly

    vvR

    TdTCss

    v

    dvR

    T

    dTCdsherefore

    vRTPanddTCd!$as&deal

    Pdvd!Tdsfrom

    "o

    "o

    "o

    vo

    vo

    vo

  • 5/25/2018 Chapter 6 Entropy Ppt

    22/56

    ..

    22

    )1.6...(lnln)12.6.(

    )13.6...(lnln)10.6.(

    1

    2

    1

    212

    1

    2

    1

    212

    PPR

    TTCssE#

    v

    vR

    T

    TCssE#

    "o

    vo

    =

    +=

    ; To intr!rate E%n;

  • 5/25/2018 Chapter 6 Entropy Ppt

    23/56

    ..

    2$

    E!"#P$E >;* Consider Ea(ple 5;6# in which oy!en is heated&ro( $00 to 500 F; +ssu(e that durin! this process the pressuredropped &ro( 200 to 50 BPa; Calculate the chan!e in entropy perBilo!ra(;

    Solution#ethod 1; The (ost accurate answer &or the entropy chan!e# assu(in! ideal!as'eha"ior# would 'e &ro( the ideal!as ta'les# Ta%le ".1&; This result is# usin! E'. (.1(#

  • 5/25/2018 Chapter 6 Entropy Ppt

    24/56

    ..

    2*

    #ethod 3; or constantp at3,Ta'le +;2

  • 5/25/2018 Chapter 6 Entropy Ppt

    25/56

    ..

    25

    EXAMPLE 8. *al#la&e &(e (ange in en&ro- -er kilogra a' air i'

    (ea&e$ !ro 300 &o 600 4 %(ile -re''#re $ro-' !ro 00 &o 300 kPa.

    A''#e: 1. *on'&an& '-ei!i (ea&. 2. 5aria/le '-ei!i (ea&.

  • 5/25/2018 Chapter 6 Entropy Ppt

    26/56

    ..

    26

    Isentropic Process o& Ideal )ases

    (6.17)....................on'&an&

    0

    0

    0)(

    1

    1

    0)(,

    )(1

    e"n.a'$eal

    0

    'en&ro-i0,$'-roe'',a$ia/a&ian8or1

    ,1

    !ro

    =

    =+

    =+

    =++

    =++

    +=

    =+=+=

    =

    =

    =

    =

    =

    '

    v

    v

    "v

    vP

    v

    "

    Pvv

    dv'

    P

    dP

    'PdvvdP

    PdvvdPPdv

    '

    PdvvdPPdvR

    Cherefore

    vdPPdvR

    dT

    PdvdTCPdvd!Tds

    '

    'RC

    '

    RChen

    CCRand

    C

    C'

  • 5/25/2018 Chapter 6 Entropy Ppt

    27/56

    ..

    2

    ).....(6.1+

    ...(6.18)..........an$

    on'&an&

    9:Pe"#a&ionga'i$eal%i&*o/ine

    1

    2

    1

    )1(

    1

    2

    1

    2

    2

    1

    2

    1

    1

    2

    2211

    =

    =

    =

    =

    ====

    '''

    ''

    '''

    v

    v

    P

    P

    T

    T

    (

    (

    v

    v

    P

    P

    vPvPPv

    Isentropic Process o& Ideal )ases

  • 5/25/2018 Chapter 6 Entropy Ppt

    28/56

    ..

    2>

    1

    2

    1

    2

    1

    2

    1

    2

    r

    r

    r

    r

    v

    v

    v

    v

    PP

    PP

    =

    =

    Ta'le +

    &or isentropic process o& ideal !as only

    Relati"e Pressure# Pr

    Relati"e Kolu(e# "r

  • 5/25/2018 Chapter 6 Entropy Ppt

    29/56

    .. 2A

    ).....(6.21

    ...(6.20)..........an$

    /eoe6.1+

  • 5/25/2018 Chapter 6 Entropy Ppt

    30/56

    .. $0

    P

    E l 8 0 I i'l it i d i

  • 5/25/2018 Chapter 6 Entropy Ppt

    31/56

    .. $

    Example 8.0In a re"ersi'le process nitro!en is co(pressed in acylinder &ro( 00 BPa# 20GC to 500 BPa; ?urin! the co(pressionprocess the relation 'etween pressure and "olu(e is PK;$ 3constant; Calculate the worB and heat trans&er per Bilo!ra(# andshow this process on P" and T s dia!ra(s;

    Syste(: Nitro!en;

    Initial state: P# T1 state Bnown;

    inal state: P2

    Process: Re"ersi'le# polytropic with eponent n 3;$

    ?ia!ra(: P"# Ts

    @odel: Ideal !as# constant speci&ic heat"alue at $00 F;

    +nalysis: 9oundary (o"e(ent worB; 43PdKirst law: %3 u2uJw

  • 5/25/2018 Chapter 6 Entropy Ppt

    32/56

    .. $2

    Solution

    polytropic process P"n3c

  • 5/25/2018 Chapter 6 Entropy Ppt

    33/56

    .. $$

    Second Law E&&iciency

    6.2).........(:$e;i,e',on'#e$%ork

    6.2).........(:$e;i,e'-ro$#,e$ %ork

    )e!!i,ien,A$ia/a&i,(ore!!i,ien,7'en&ro-i,

    6.23).........(P#-=ea&

    (6.22)..........engine=ea&

    -o''i/le)(a>.7$eal;'.A,al:e!!i,ien,la%2n$

    ac!al

    isenro"ic

    isen

    isenro"ic

    ac!alisen

    rev

    ac!al

    rev

    ac!al

    %

    %%

    %

    COPCOPCOP

    =

    =

    =

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    34/56

    .. $*

    "

    ss1=s2s s2

    P1

    2

    1

    2s

    P2"2

    "2s

    "1

    #a#s

    $sentropicProcess

    %ctua&Process

    T

    ss1=s2s s2

    P1

    2

    1

    2s

    P2T2

    T2s

    T1

    $sentropicProcess

    %ctua&Process

    7'en&ro-i E!!iien o! Compressors

    12

    12

    1212

    ,

    an$:la%1'&

    hh

    hhherefore

    hh%hh%

    %

    %

    %

    %

    scom"

    ass

    a

    s

    ac!al

    isenro"ic

    isen

    =

    ==

    ==

    w

    'ompressor

  • 5/25/2018 Chapter 6 Entropy Ppt

    35/56

    .. $5

    T

    ss1=s2s s2

    P2

    22s

    1

    P1

    T2

    T1

    T2s

    $sentropicProcess

    %ctua&Process

    7'en&ro-i E!!iien o! Turbines

    12

    12

    1212

    ,

    ,

    an$:la%1'&

    hh

    hhherefore

    hh%hh%

    %

    %

    %

    %

    s

    !rbine

    ass

    s

    a

    isenro"ic

    ac!al!rbisen

    =

    ==

    ==

    wTur(ine

    Ea(ple 6> Stea( enters an adia'atic tur'ine steadily at $

  • 5/25/2018 Chapter 6 Entropy Ppt

    36/56

    .. $6

    Ea(ple 6 > Stea( enters an adia'atic tur'ine steadily at $@Pa and *00C and lea"es at 50 BPa and 00C; i& the power outputo& the tur'ine is 2 @4 and FE and PE are ne!li!i'le# deter(ine

  • 5/25/2018 Chapter 6 Entropy Ppt

    37/56

    .. $

    Solution

    +ssu(e Ideal !as : P" 3 RT

    Isentropic process : P"B3 constant

    B 3 CpC"

    Ea(ple 6A +ir is co(pressed 'y an adia'atic co(pressor &ro(00 BPa and 2C and to a pressur o& >00 BPa at a stead rate o& 0;2B!s; I& the the adia'atic e&&iciency o& the co(pressor is >0V#deter(ine

  • 5/25/2018 Chapter 6 Entropy Ppt

    38/56

    Su((ary

  • 5/25/2018 Chapter 6 Entropy Ppt

    39/56

    .. $A

    Ine%uality o& CL+,SI,S

    Consider a Re"ersi'le -eat En!ineTheory: .L/ 01 .-.L3 4re"

    T-and TL3 constant

    0 TQ

    HeatEngine

    Source, TH

    Sink, TL

    Wrev

    QH

    QL

    0...

    0:....

    0

    =

    ==

    ==

    =

    T

    Qcyclereversibleafor

    T

    Q

    T

    Q

    T

    QTherefore

    T

    Q

    T

    Q

    T

    Q

    T

    QFrom

    QQQ

    L

    L

    H

    H

    L

    L

    H

    H

    L

    L

    H

    H

    LH

    L

    L

    H

    H

    T

    Q

    T

    Q

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    40/56

    .. *0

    Now consider an Irre"ersi'le -eat En!ine which operates 'etween the sa(eT-and TLand recei"es the sa(e .-'ut reects .L7 and produce 4irr

    Theory: 4irr 84re" 1 .-.7L3 4irrthere&ore .7L / .L

    HeatEngine

    Source, TH

    Sink, TL

    Wirr

    QH

    QL

    )1.6(0....

    0...

    0:....

    0

    '

    '

  • 5/25/2018 Chapter 6 Entropy Ppt

    41/56

    .. *

    ENTROPY: + Property o& a Syste(

    C

    B

    A

    1

    2

    Consider Two Re"ersi'le Cycles +9 and +C

    )3.6...(..........

    )2.6.........(

    ............

    0;.

    0;.

    0..

    2

    112

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    rev

    rev

    CB

    CA

    BA

    T

    QSS

    T

    QdSDefined

    PROPERTYPATHonnob!saefinalandiniialonde"endsermThis

    T

    Q

    T

    Q

    T

    Q

    T

    Q

    T

    QCACycle

    T

    Q

    T

    Q

    T

    QBACycle

    T

    Qcyclerevfor

    =

    =

    =

    +

    ==

    +

    ==

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    42/56

  • 5/25/2018 Chapter 6 Entropy Ppt

    43/56

    .. *$

    Principle o& Increase o& Entropy

    )8.6(0

    )7.6(0

    )6.6(0

    11,

    11

    ;

    0

    0

    0

    0

    0

    +=

    +=

    >

    +=

    =

    $ss!rro!ndinsysem$eneraion

    isolae

    $ss!rro!ndinsysemne

    $ss!rro!ndinsysemne

    $ss!rro!ndinsysem

    dSdSdSDefined

    dS

    dSdSdS

    Posiiveal%aysTT

    henTTSince

    TTQ

    T

    Q

    T

    QdSdSdS

    T

    QdS

    T

    QdS

    Surroundings,temperature = T

    S!stem,temperature = T

    W

    Q

  • 5/25/2018 Chapter 6 Entropy Ppt

    44/56

    .. **

    Entropy Chan!e o& a Solid or Li%uid

    Solid Li%uid

    Speci&ic -eat 3 Constant

    K "ery s(all hu %

    ds 3

  • 5/25/2018 Chapter 6 Entropy Ppt

    45/56

    .. *5

    Entropy Chan!e o& an Ideal )as

    )12.6...(ln

    )11.6...(,

    ,

    )10.6...(ln

    )+.6...(,

    2

    11

    212

    2

    11

    212

    =

    =

    ===

    +=

    +=

    ==+=

    P

    PR

    T

    dTCss

    P

    dPR

    T

    dTCdsherefore

    PRTvanddTCdh$as&deal

    vdPdhTdsfrom

    Similarly

    vvR

    TdTCss

    v

    dvR

    T

    dTCdsherefore

    vRTPanddTCd!$as&deal

    Pdvd!Tdsfrom

    "o

    "o

    "o

    vo

    vo

    vo

  • 5/25/2018 Chapter 6 Entropy Ppt

    46/56

    .. *6

    ).....(6.1+

    ...(6.18)..........an$

    on'&an&

    9:Pe"#a&ionga'i$eal%i&*o/ine

    1

    2

    1

    )1(

    1

    2

    1

    2

    2

    1

    2

    1

    1

    2

    2211

    =

    =

    =

    =

    ====

    '''

    ''

    '''

    v

    v

    P

    P

    T

    T

    (

    (

    v

    v

    P

    P

    vPvPPv

    Isentropic Process o& Ideal )ases

  • 5/25/2018 Chapter 6 Entropy Ppt

    47/56

    .. *

    ).....(6.21

    ...(6.20)..........an$

    /eoe6.1+

  • 5/25/2018 Chapter 6 Entropy Ppt

    48/56

    .. *>

    Second Law E&&iciency

    6.2).........(:$e;i,e',on'#e$%ork

    6.2).........(:$e;i,e'-ro$#,e$ %ork

    )e!!i,ien,A$ia/a&i,(ore!!i,ien,7'en&ro-i,

    6.23).........(P#-=ea&

    (6.22)..........engine=ea&

    -o''i/le)(a>.7$eal;'.A,al:e!!i,ien,la%2n$

    ac!al

    isenro"ic

    isen

    isenro"ic

    ac!alisen

    rev

    ac!al

    rev

    ac!al

    %

    %%

    %

    COP

    COPCOP

    =

    =

    =

    =

  • 5/25/2018 Chapter 6 Entropy Ppt

    49/56

    So(e Selected Pro'le(s

  • 5/25/2018 Chapter 6 Entropy Ppt

    50/56

    . . 0

    >; Consider a Carnotcycle heat en!ine with water as the worBin!&luid; The heat trans&er to the worBin! &luid taBes place at $00GC1 durin! thisprocess the water chan!es &ro( saturated li%uid to saturated "apor; -eat isreected &ro( the worBin! &luid at *0GC; * +n insulated cylinder &itted with a &rictionless piston contains

  • 5/25/2018 Chapter 6 Entropy Ppt

    51/56

    . . 1

    >;* +n insulated cylinder &itted with a &rictionless piston contains0; B! o& water at 00GC# A0 percent %uality; The piston is (o"ed#co(pressin! the water until it reaches a pressure o& ;2 @Pa; -ow (uchworB is re%uired in this processQ

    >;5 + cylinder containin! R22 at 0GC# 00 BPa# has an initial"olu(e o& 20 L; + piston co(presses the R22 in a re"ersi'le#isother(al process until it reaches the saturated "apor point; Calculatethe re%uired worB and heat trans&er needed to acco(plish this chan!e o&state;

    >;6 One Bilo!ra( o& water at $00GC epands a!ainst a piston ina cylinder unril is reaches a('ient pressure# 00 BPa# at which point thewater has a %uality o& A0 percent; It (ay 'e assu(ed that theepansion is re"ersi'le and adia'atic;;> + ri!id# insulated "essel contains superheated "apor stea(t > @P $5O C + l th l i d ll i t t

  • 5/25/2018 Chapter 6 Entropy Ppt

    52/56

    . . 2

    at ;> @Pa# $5OoC ; + "al"e on the "essel is opened# allowin! stea( toescape; It (ay 'e assu(ed that at any instant the stea( re(ainin!inside the "essel has under!one a re"ersi'le# adiWa'atic epansion;?eter(ine the &raction o& stea( that has escaped when the stea(re(ainin! inside the "essel reaches the saturated "apor line;

    >;A +n insulated cylinder &itted with a &rictionless piston contains0; B! o& superheated "apor stea(; The stea( epands to a('ientpressure# 00 BPa# at which point the te(perature o& the stea( insidethe cylinder is 50GC; The stea( does 50 BD o& worB a!ainst the pistondurin! this epansion; 4hat were the initial pressure and te(peratureQ

    >;2 4e wish to cool a !i"en %uantity o& (aterial rapidly to ate(perature o& lOGC; The process re%uires a heat reection o& 2000 BD;One possi'ility is to i((erse the (aterial in a (iture o& ice and water#allowin! heat trans&er &ro( the (aterial to the ice# which (elts the ice;+nother possi'ility is to cool the (aterial 'y e"aporatin! RW22 at 20GC;The heat trans&er to the R22 chan!es it &ro( a saturated li%uid to a

    saturated "apor; + third possi'ility is to e"aporate li%uid nitro!en at0;$BPa pressure;

  • 5/25/2018 Chapter 6 Entropy Ppt

    53/56

    . . 3

    605 Nitro!en !as is co(pressed &ro( >0 BPa and2GC to *>0 BPa 'y a OB4 co(pressor; ?eter(ine the (ass&low rate o& nitro!en throu!h the co(pressor# assu(in! the

    co(pression process to 'e =a> isentropic;

  • 5/25/2018 Chapter 6 Entropy Ppt

    54/56

    . .

    60A Stea( enters an adia'atic tur'ine at > @Pa and 500GC witha (ass &low rate o& $ B!s and lea"es at $0 BPa; The adia'atic e&&iciencyo& the tur'ine is 0;A0; Ne!lectin! the Binetic ener!y chan!e o& the stea(#deter(ine 0 (sand lea"es at 50 BPa# 00GC# and *0 (s; I& the power output o& thetur'ine is 5 @4# deter(ine 0 percent# deter(ine

  • 5/25/2018 Chapter 6 Entropy Ppt

    55/56

    . .

    6* +ir enters an adia'atic co(pressor at 00 BPa and GC at arate o& ;2 ($s# and it eits at 25GC; The co(pressor has anadia'atic e&&iciency o& >* percent; Ne!lectin! the chan!es in Binetic

    and potential ener!ies# deter(ine 0 (so I& the

    adia'atic e&&iciency o& the co(pressor is >5 percent# deter(ine

  • 5/25/2018 Chapter 6 Entropy Ppt

    56/56

    End of Chapter 6