44
Chapter 3 Synapses

Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

  • View
    228

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chapter 3Synapses

Page 2: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Neurons communicate by transmitting chemicals at junctions called “synapses”

• In 1906, Charles Scott Sherrington coined the term synapse to describe the specialized gap that existed between neurons.

Page 3: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Sherrington observed that repeated stimuli over a short period of time produced a stronger response.

• Led to the idea of temporal summation or that repeated stimuli can have a cumulative effect and can produce a nerve impulse when a single stimuli is too weak.

Page 4: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-3, p. 54

Page 5: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Sherrington also noticed that several small stimuli on a similar location produced a reflex when a single stimuli did not.

• This led to the idea of spatial summation or that synaptic input from several locations can have a cumulative effect and trigger a nerve impulse.

Page 6: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-4, p. 54

Page 7: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Excitatory postsynaptic potential (EPSP) is a graded potential that decays over time and space.

• Graded potentials are different than action potentials!!

• The cumulative effect of EPSPs are the basis for temporal and spatial summation.

Page 8: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Sherrington also noticed that during the reflex that occurred, the foot of a dog that was pinched retracted while the other three feet were extended.

• He suggested that an interneuron in the spinal cord sent an excitatory message to the flexor muscles of one leg and an inhibitory message was sent to the other three legs.

Page 9: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-5, p. 55

Page 10: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• This led to the idea of inhibitory postsynaptic potential or the temporary hyperpolarization of a membrane.

• An IPSP occurs when synaptic input selectively opens the gates for positively charged potassium ions to leave the cell or for negatively charged chloride ions to enter the cells.

• Serves as an active “brake”, that suppresses excitation.

Page 11: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

The Concept of the Synapse

• Neurons can have thousands of synapses.• Both temporal and spatial summation can

occur within a neuron.• The likelihood of an action potential depends

upon the ratio of IPSPs to EPSPs at a given moment.

Page 12: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Transmission of a message across the synapse occurs by chemical means.

• Neurotransmitters are chemicals that travel across the synapse and allow communication between neurons.

Page 13: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• The major sequence of events that allow communication between neurons across the synapse are as follows:

1. The neuron synthesizes chemicals that serve as neurotransmitters.

2. Neurons store neurotransmitters in axon terminals or transport them there.

3. An action potential triggers the release of neurotransmitters into the synaptic cleft.

Page 14: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse (cont.)

4. The neurotransmitters travel across the cleft and attach to receptors on the postsynaptic neuron.

5. The neurotransmitters separate from the receptors.

6. The neurotransmitters are taken back into the presynaptic neuron (reuptake), diffuse away, or are inactivated by chemicals.

7. The postsynaptic cell may send negative feedback to slow the release of further neurotransmitters.

Page 15: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-8, p. 59

Page 16: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Major categories of neurotransmitters include the following:– Amino acids — glutamate, GABA, – Acetylcholine– Monoamines – serotonin, dopamine,

norephinephrine, epinephrine – Purines --adenosine– Gases –nitric oxide (not laughing gas!)

Page 17: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Neurons synthesize neurotransmitters and other chemicals from substances provided by the diet.

• Smaller neurotransmitters are synthesized in the presynaptic terminal and held there for release.– Example: acetylcholine

• Larger neurotransmitters are synthesized in the cell body and transported down the axon.– Example: peptides

Page 18: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Vesicles are tiny spherical packets located in the presynaptic terminal where neurotransmitters are held for release.

• Exocytosis refers to the excretion of the neurotransmitter from the presynaptic terminal into the synaptic cleft.– Triggered by an action potential arriving fro

the axon.

Page 19: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-10, p. 61

Page 20: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Transmission across the synaptic cleft by a neurotransmitter takes fewer than 10 microseconds.

• Most individual neurons release at least two or more different kinds of neurotransmitters.

• A neuron may respond to more types of neurotransmitters than it releases.

Page 21: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• An ionotropic effect refers to when a neurotransmitter attaches to receptors and immediately opens ion channels.

• Ionotropic effects occur very quickly and are very short lasting.

• Most of the brain’s excitatory ionotropic synapses use glutamate or acetylcholine as a neurotransmitter.

Page 22: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Metabotropic effects refer to when a neurotransmitter attaches to a receptor and initiates a sequence of metabolic reactions that are slower and longer lasting.

• Metabotropic events include such behaviors as hunger, fear, thirst, or anger.

Page 23: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Metabotropic effects utilize a number of different neurotransmitters and are often called neuromodulators because they do not directly excite or inhibit the postsynaptic cell.

• Instead, neuromodulators:– increase or decrease the release of other

neurotransmitters– alter the response of postsynaptic cells to

various inputs.

Page 24: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• A hormone is a chemical secreted by a gland or other cells that is transported to other organs by the blood where it alters activity.

• Endocrine glands are responsible for the production of hormones.

• Hormones are important for triggering long-lasting changes in multiple parts of the body.

Page 25: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Neurotransmitters released into the synapse do not remain and are subject to either inactivation or reuptake.

• Reuptake refers to when the presynaptic neuron takes up most of the neurotransmitter molecules intact and reuses it.

• Transporters are special membrane proteins that facilitate reuptake. – Example: Serotonin is taken back up into

the presynaptic terminal.

Page 26: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Examples of inactivation and reuptake include:– Acetylcholine is broken down by

acetylcholinesterase into acetate and choline.• Some serotonin and catecholamine molecules are

converted into inactive chemicals:– COMT (catechol-o-methyltranferase)and MAO (monoamine

oxidase) are enzymes that convert catecholamine transmitters into inactive chemicals.

Page 27: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Chemical Events at the Synapse

• Research has begun to investigate the role of events at the synapse and their effects on personality.

• Research suggests that some dopamine receptors may be related to “pleasure-seeking” and “thrill-seeking” behaviors.

Page 28: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• The study of the influence of various kinds of drugs has provided us with knowledge about many aspects of neural communication at the synaptic level.

• Drugs either facilitate or inhibit activity at the synapse.– Antagonistic drugs block the effects of

neurotransmitters (e.g., novacaine, caffeine).– Agonist drugs mimic or increase the effects of

neurotransmitters (e.g., receptors in the brain respond to heroin, LSD and cocaine)

• Drugs alter various stages of synaptic processing.

Page 29: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Drugs work by doing one or more of the following to neurotransmitters:1. Increasing the synthesis.2. Causing vesicles to leak.3. Increasing release.4. Decreasing reuptake.5. Blocking the breakdown into inactive

chemical.6. Directly stimulating or blocking

postsynaptic receptors.

Page 30: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• A drug has an affinity for a particular type of receptor if it binds to that receptor.– Can vary from strong to weak.

• The efficacy of the drug is its tendency to activate the receptor .

• Drugs can have a high affinity but low efficacy.

Page 31: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Almost all abused drugs stimulate dopamine release in the nucleus accumbens – small subcortical area rich in dopamine

receptors– an area responsible for feelings of pleasure

• Sustained bursts of dopamine in the nucleus accumbens inhibit cells that release the inhibitory neurotransmitter GABA

Page 32: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-18, p. 72

Page 33: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Drugs are categorized according to their predominant action or effect upon behavior

• Stimulant drugs increase excitement, alertness, motor activity and elevate mood.

• Examples: amphetamines, cocaine, methylphenidate (Ritalin), MDMA (Ecstasy), nicotine

• Stimulant drugs directly stimulate dopamine receptor types D2, D3, and D4.

Page 34: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-19, p. 72

Page 35: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Amphetamine stimulate dopamine synapses by increasing the release of dopamine from the presynaptic terminal.

• Cocaine blocks the reuptake of dopamine, norepinephrine, and serotonin.

• Methylphenidate (Ritalin) also blocks the reuptake of dopamine but in a more gradual and more controlled rate.

Page 36: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Ecstasy increases the release of dopamine at low doses that account for its stimulant properties.

• Ecstasy increases the release of serotonin at higher doses accounting for its hallucinogenic properties.

• Research indicates ecstasy use may contribute to higher incidences of anxiety and depression as well as memory loss and other cognitive deficits.

Page 37: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Fig. 3-20, p. 73

Page 38: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Nicotine stimulates one type of acetylcholine receptor known as the nicotinic receptor.

• Nicotinic receptors are found in the central nervous system, the nerve-muscle junction of skeletal muscles and in the nucleus accumbens (facilitate dopamine release).

Page 39: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Opiate drugs are those that are derived from (or similar to those derived from) the opium poppy.

• Opiates decrease sensitivity to pain and increase relaxation.

• Examples: morphine, heroin, methadone.

Page 40: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• The brain produces peptides called endorphins.

• Endorphin synapses may contribute to certain kinds of reinforcement by inhibiting the release of GABA indirectly.

• Inhibiting GABA indirectly releases dopamine.• Endorphins attach to the same receptors to

which opiates attach.

Page 41: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Opiates also block the locus coeruleus.– involved in our response to arousing

stimuli by release of norepinephrine– also involved in memory storage.

Page 42: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Tetrahydocannabinol (THC) is the active ingredient in marijuana.

• THC attaches to cannabinoid receptors throughout the brain but especially the cerebral cortex, cerebellum, basal ganglia, and hippocampus.

• Anandamide and 2-AG are the endogenous chemicals that attach to these receptors.

Page 43: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• The location of the receptors in the brain may account for the subjective effects of loss of time, an intensification of sensory experience, and also memory impairment.

• The cannabinoid receptors are located on the presynaptic neuron and inhibit the release of glutamate and GABA.

Page 44: Chapter 3 Synapses. The Concept of the Synapse Neurons communicate by transmitting chemicals at junctions called “synapses” In 1906, Charles Scott Sherrington

Drugs and the Synapse

• Hallucinogenic drugs cause distorted perception.

• Many hallucinogenic drugs resemble serotonin in their molecular shape.

• Hallucinogenic drugs stimulate serotonin type 2A receptors (5-HT2A2A) at inappropriate times or for longer duration than usual thus causing their subjective effect.