40
CHAPTER-3 Interest & Equivalence

CHAPTER-3

Embed Size (px)

DESCRIPTION

CHAPTER-3. Interest & Equivalence. Computing Cash Flows. Example -3.1 The manager has decided to purchase a new $30,000 mixing machine. The machine may be paid for in one of two ways: 1. Pay the full price now minus a 3% discount. - PowerPoint PPT Presentation

Citation preview

Page 1: CHAPTER-3

CHAPTER-3

Interest & Equivalence

Page 2: CHAPTER-3

Example -3.1 The manager has decided to purchase a new $30,000 mixing machine. The machine may be paid for in one of two ways:

1. Pay the full price now minus a 3% discount.2. Pay $5000 now; at the end of one year, pay $8000; at the end of each of the next four years, pay $6000.

List the alternatives in the form of a table of cash flows.

Computing Cash Flows

Page 3: CHAPTER-3

SOLUTION:The first plan represents a lump sum of $29,100 now, the second one calls for payments continuing until the end of the fifth year. Those payments total $37,00, but the $37,000 value has no clear meaning, since it has added together cash flows occurring at different times. The second alternative can only be described as a set of cash flows. Both alternatives are shown in the cash flow table, with disbursements given negative signs.

Computing Cash Flows

Page 4: CHAPTER-3

Computing Cash FlowsEnd of Year Pay in Full Now Pay Over 5 Years

0 (now) -$ 29,000 -$ 5,000

1 0 -8,000

2 0 -6,000

3 0 -6,000

4 0 -6,000

5 0 -6,000

This can be presented as a cash flow diagram:

0 1 2 3 4 5 0 1 2 3 4 5

$29,000$5,000

$8,000

$6,000 $6,000 $6,000 $6,000

Page 5: CHAPTER-3

Example – 3.2

A man borrowed $1000 from a bank at 8% interest.

He agreed to repay the loan in two end-of-year

payments.

At the end of the first year, he will repay half of the

$1000 principal amount plus the interest that is due.

Compute the borrower's cash flow.

Computing Cash Flows

Page 6: CHAPTER-3

SOLUTION:In engineering economic analysis, we normally refer to the beginning of the first year as "time 0.“ At this point the man receives $1000 from the bank. (A positive sign represents a receipt of money and a negative sign, disbursement.) Thus, at time 0, the cash flow is +$1000.

At the end of the first year, the man pays 8% interest for the use of $1000 for one year. The interest is 0.08 x $1000 = $80. In addition, he repays half the $1000 loan, or $500. Therefore, the end-of-year-I cash flow is -$580.

At the end of the second year, the payment is 8% for the use of the balance of the principal ($500) for the one-year period, or 0.08 x 500 = $40. The $500principal is also repaid for a total end-of year-2 cash flow at -$540.

Computing Cash Flows

Page 7: CHAPTER-3

The cash flow is:

(continued) Example – 3.2

End of Year

Cash Flow

0 (now) +$1,000

1 -580

2 -540

$1,000

0 1 2

$580

$540

Page 8: CHAPTER-3

You have agreed to loan a friend $5000 for 5 years at a simple interest rate of 8% per year. How much interest will you receive from the loan'? How much will your friend pay you at the end of 5 years?

SOLUTION:Total interest earned= P i n = ($5000) (0.08) (5 yr) = $2000 Amount due at end of loan = P + P i n

= 5000 + 2000 = $7000

Example – 3.3

Page 9: CHAPTER-3

To highlight the difference between simple and compound interest, rework Example 3.3 using an interest rate of 8% per year compound interest. How will this change affect the amount that your friend pays you at the end of 5 years?

SOLUTION:Original loan amount (original principal) = $5000Loan term = 5 yearsInterest rate charged =8% per year compound interest

Example – 3.4

Page 10: CHAPTER-3

In the following table we calculate on a year-to-year basis the total dollar amount due at the end of each year. Notice that this amount becomes the principal upon which interest is calculated in the next year (this is the

Compounding effect). Total Principal(p) Interest owed at end of year Total amount Due at end of year

year on which interest n from year n’s n ,new Total principal for year

is calculated in year n total principal n+1

1 $5000 $5000 x 0.08 = 400 $5000+ 400

=5400 2 5400 5400 x 0.08 = 432 5400 + 432 =

5832 3 5832 5832 x 0.08 = 467 5832+ 467 = 6299 4 6299 6299 x 0.08 = 504 6299 + 504 =

6803 5 6803 6803 x 0.08 = 544 6803 + 544 =

7347

(Continued) Example- 3.4

Page 11: CHAPTER-3

The total amount due at the end of the fifth year, $7347, is the amount that your friend will give you to repay the original loan. Notice that this amount is $347 more than the amount you received for loaning the same amount, for the same period, at simple interest. This, of course, is because of the effect of interest being earned (by you) on top of interest.

(Continued) Example – 3.4

Page 12: CHAPTER-3

If $500 were deposited in a bank savings account, how much would be in the account three years hence if the bank paid 6% interest compounded annually.We can draw a diagram of the problem. Note: To have a consistent notation, we will represent receipts by upward arrows (and

positive signs), and disbursements (or payments) will have downward arrows (and negative signs).]

S OLUTION:From the view point of the person depositing the $500,the diagram for "today"

(Time=0) through Year3 is as follows: F=? Reciept(+$)

0 1 2 3

Disbursements(-$) P=500 n=3 i=0.06

Example – 3.5

Page 13: CHAPTER-3

We need to identify the various elements of the equation. The present sum P is $500 . The interest rate per interest period is 6%, and in 3 years there are three interest periods. The future sum F is to be computed from the formula F = P(1 + i)^n = 500(1 + 0.06)^3 = $595.50 where P = $500,i = 0.06, n = 3, and F is unknown. Thus if we deposit $500 in the bank now at 6% interest, there will be $595.50 in

the account in three years. ALTERNATE SOLUTION:The equation F =P (I + i)^n need not be solved with a hand calculator. Instead, the single payment compound amount factor, (1 + i)^n, is readily determined from computed tables . The factor is written in convenient notation as (1 + i)^n = (F /P, i, n)and in functional notation as (F/P, 6%, 3) Knowing n = 3, locate the proper row in the 6% table. To find F given P, look in the

first column, which is headed "Single Payment, Compound Amount Factor": for n =3,we

find 1.191.

(continued) Example – 3.5

Page 14: CHAPTER-3

Thus, F = 500(F / P, 6%, 3) = 500(1.191) = $595.50Before leaving this problem, let's draw another-diagram of it, this time from

the bank's point of view.

Receipts(+) P=500

i=0.06 n=3 0 1 2 3

Disbursements (-)

This indicates the bank receives $500 now and must make a disbursement of F at the end of 3 years. The computation, from the bank's point of view, is

F =500(F/P, 6%,3) =500(1.191) =$595.50 This is exactly the same as what was computed from the depositor's

viewpoint, since this is just the other side of the same transaction. The bank's future disbursement equals the depositor's future receipt.

(Continued) Example – 3.5

Page 15: CHAPTER-3

If you wish to have $800 in a savings account at the end of 4 years, and 5% interest was

paid annually, how much should you put into the savings account now?SOLUTION:

F =$800 ; i = 0.05 ; n = 4 ; P =unknown P = F(1 + i)^-n= 800(1 + 0.05)^-4 P= 800(0.8227) =$658.16

Thus to have $800 in the savings account at the end of 4 years, we must deposit $658.16 now.

Example – 3.6

Page 16: CHAPTER-3

ALTERNATE SOLUTION: F=800

RECIEPTS (+)

0 1 2 3

P=? n=4DISBURSEMENTS(-) i=0.05

P =F(P/F,i,n)=$800(P/F, 5%,4) From Compound interest tables: (P/F,5%,4)=0.8227 Hence, P =F(P/F,i,n)=$800(P/F, 5%,4) = $800(0.8227)=$658.16

(Continued) Example – 3.6

Page 17: CHAPTER-3

Suppose the bank changed their interest policy in Example 3-5 to "6% interest, compounded quarterly.“ For this situation, how much money would be in the account at the end of 3 years, assuming a $500 deposit now?

SOLUTION:First, we must be certain to understand the meaning of ( 6% interest,

compounded quarterly. There are two elements:6% interest: Unless otherwise described , it is customary to assume that stated

interest is for one year period, if the stated interest is for other than one year period, the time frame must be clearly stated.

Compounded quarterly: This indicates there are four interest period per year; that is, an interest is 3 months long.

We know that 6% interest is an annual rate because if it were for a different period, it would have been stated. Since , we are dealing with four interest periods per year, it follows that the interest rate per interest period is 1½ % . For the total 3 year duration, there are 12 interest periods.

Example – 3.7

Page 18: CHAPTER-3

ThusP = $500 ; i = 0.015 n=(4 x 3) = 12 ;

F = unknown

F = P(1 + i)^n= P(F / P, i, n)= $500(1 + 0.015)^12= $500(F / P,11/2%, 12)= $500(1.196) = $598A $500 deposit now would yield $598 in 3 years.

(Continued) Example – 3.7

Page 19: CHAPTER-3

Consider the following situation: Year Cash Flow O +P 1 0 2 0 3 -400 4 0 5 -600Solve for P assuming a 12% interest rate and using the compound interest tables. Recall

that receipts have a plus sign and disbursements or payments have a negative sign. Thus, the diagram is:

Reciept(+) P

0 1 2 3 4 5

Disbursements(-) SOLUTION: 400 P = 400(P/ F, 12%,3) + 600(P / F, 12%,5) 600 = 400(0.7118) + 600(0.5674) = $625.16It is important to understand just what the solution, $625.16,represents.We can say that $625.16is the amount of money that would need to be invested at 12% annual interest to allow for thewithdrawalof $400 at the end of 3 years and $600 at the end of 5 years.

Example – 3.8

Page 20: CHAPTER-3

There is another way to see what the $625.16 value of P represents. Suppose at Year0 you were offered a piece of paper that guaranteed you would be paid $400 at the end of 3 years and $600 at the end of 5 years. How much would you be willing to pay for this piece of paper if you wanted your money to produce a 12% interest rate?

This alternate statement of the problem changes the signs in the cash flow and the diagram :

Year Cash Flow O -P 1 0 2 0 3 +400 4 0 5 +600

(continued) Example – 3.8

Page 21: CHAPTER-3

Reciept(+) 400 600

0 1 2 3 4 5

P

Disbursement(-)

Since, the goal is to recover our initial investment P together with 12% interest per year. We can see that the P must be less than the total amount to be received in the future ($400+600=$1000) . We must calculate the present sum P that is equivalent at 12% interest, to an aggregate on $400 in 3years and $600 in 5years.

(Continued) Example – 3.8

Page 22: CHAPTER-3

Since we have already derived the relationship p =F (1 + i) ^(-n ) we write p =400(1 + 0.12) ^-3 + 600(1 + 0.12)^-5 =$625.17This is virtually the same amount computed from

the first statement of this example. [The slight

difference is due to the rounding in the compound interest tables. For example, (1 + 0.12)-5 =

0.567427 ,but the compound interest table for 12% shows 0.5674.]

(Continued) Example – 3.8

Page 23: CHAPTER-3

The second set of cash flows in Example 3-8 was: Year Cash Flows 0 -P 1 0 2 0 3 +400 4 0 5 +600

At a 12% interest rate, P was computed to be $625.17. Suppose the interest rate is increased to 15%. Will the value of P be larger or smaller?

SOLUTION: One can consider P as a sum of money invested at 15% from which one is to obtain $400 at the end of 3 years and $600 at the end of 5 years. At 12%, the required P is $625.17. At 15%, P will earn more interest each year., indicating that we can begin with a smaller P & still accumulate enough money for subsequent cash flows.

Example – 3.9

Page 24: CHAPTER-3

P =400 (P / F, 15'%, 3) + 600 (P/ F, 15%, 5) = 400 (0.6575) + 600 (0.4972) = $561.32

The value of P is smaller at 15% than at 12% interest

(Continued) Example – 3.9

Page 25: CHAPTER-3

Repaying a Debt:

Plan 1 (Constant Principal) repays 1/n th of the principal each year.

Plan 2 (Interest only) only the interest due is paid each year, with no principal payment.

Plan 3 (Constant Payment) calls for five equal end-of-year payments.

Plan 4 (All at Maturity) no payment is made until the end of year 5, when the loan is completely repaid.

EQUIVALENCE

Page 26: CHAPTER-3

Plan – 1 Constant principal payment plus interest due

EQUIVALENCE

Year Amount Owed at Beginning of Year

Interest Owed for that year

Total Owed at end of year

Principal Payment

Total end of year Payment

1 $5,000 $400 $5,400 $1,000 $1,400

2 4,000 320 4,320 1,000 1,320

3 3,000 240 3,240 1,000 1,240

4 2,000 160 2,160 1,000 1,160

5 1,000 80 1,080 1,000 1,080

$1,200 $5,000 $6,200

Page 27: CHAPTER-3

Plan – 2 Annual interest payment and principal payment at end of 5 years

EQUIVALENCE

Year Amount Owed at Beginning of Year

Interest Owed for that year

Total Owed at end of year

Principal Payment

Total end of year Payment

1 $5,000 $400 $5,400 $0 $400

2 5,000 400 5,400 0 400

3 5,000 400 5,400 0 400

4 5,000 400 5,400 0 400

5 5,000 400 5,400 5,000 5,400

$2,000 $5,000 $7,000

Page 28: CHAPTER-3

Plan – 3 Constant annual payment

EQUIVALENCE

Year Amount Owed at Beginning of Year

Interest Owed for that year

Total Owed at end of year

Principal Payment

Total end of year Payment

1 $5,000 $400 $5,400 $852 $1252*

2 4,148 331 5,400 921 1252

3 3,227 258 5,400 994 1252

4 2,223 178 5,400 1,074 1252

5 1,159 93 5,400 1,159 1252

$1,260 $5,000 $6,260

* Calculations in Example 4-3, 1252.28 rounded off to even amount.

Page 29: CHAPTER-3

Plan – 4 All payment at end of 5 years

EQUIVALENCE

Year Amount Owed at Beginning of Year

Interest Owed for that year

Total Owed at end of year

Principal Payment

Total end of year Payment

1 $5,000 $400 $5,400 $0 $0

2 5,400 432 5,832 0 0

3 5,832 467 6,299 0 0

4 6,299 504 6,803 0 0

5 6,803 544 7,347 5,000 7,347

$2,347 $5,000 $7,347

Page 30: CHAPTER-3

Time (years)0

1000

2000

3000

4000

5000

6000

Year 1Year 2Year 3Year 4Year 5

Plan 1 Constant Principal

Year End-of-Year

Payment

1 $1400

2 1320

3 1240

4 1160

5 1080

$6200

At end of each year pay $1000 principal plus interest due

Page 31: CHAPTER-3

Time (years)0

1000

2000

3000

4000

5000

6000

Year 1Year 2Year 3Year 4Year 5

Plan 2 Interest Only

Year End-of-Year

Payment

1 $400

2 400

3 400

4 400

5 5400

$7000

Pay interest due at end of each year and principal at end of 5 years

Page 32: CHAPTER-3

Time (years)0

1000

2000

3000

4000

5000

6000

Year 1Year 2Year 3Year 4Year 5

Plan 3 Constant Payment

Year End-of-Year

Payment

1 $1252

2 1252

3 1252

4 1252

5 1252

$6260

Pay in five equal end-of-year payments

Page 33: CHAPTER-3

Time (years)0

1000

2000

3000

4000

5000

6000

7000

8000

Year 1Year 2Year 3Year 4Year 5

Plan 4 All at maturity

Year End-of-Year

Payment

1 $0

2 0

3 0

4 0

5 7347

$7347

Pay principal and interest in one payment at end of 5 years

Page 34: CHAPTER-3

Time (years)0

1000

2000

3000

4000

5000

6000

7000

8000

Year 1Year 2Year 3Year 4Year 5

EQUIVALENCE

Year End-of-Year

Payment

1 $0

2 0

3 0

4 0

5 7347

$7347

Pay principal and interest in one payment at end of 5 years

Page 35: CHAPTER-3

EQUIVALENCE

Time (years)0

10002000300040005000600070008000

Year 1Year 2Year 3Year 4Year 5

Time (years)0

1000

2000

3000

4000

5000

6000

Year 1Year 2Year 3Year 4Year 5

Time (years)0

100020003000400050006000

Year 1Year 2Year 3Year 4Year 5

Time (years)0

100020003000400050006000

Year 1Year 2Year 3Year 4Year 5

Plan 1 Plan 2

Plan 3 Plan 4

Page 36: CHAPTER-3

EQUIVALENCE

YearEnd-of-Year

Payment

1 $1400

2 1320

3 1240

4 1160

5 1080

$6200

YearEnd-of-Year

Payment

1 $400

2 400

3 400

4 400

5 5400

$7000

Plan 1 Plan 2

Page 37: CHAPTER-3

Difference in Repayment Plans

Plan Total Interest Paid

1 $1400

2 1320

3 1240

4 1160Shaded area = (Money owed in Year 1) (1 Year)Shaded area = (Money owed in Year 2) (1 Year)Shaded area = (Money owed in Year 3) (1 Year)Shaded area = (Money owed in Year 4) (1 Year)Shaded area = (Money owed in Year 5) (1 Year)OrShaded area [(Money owed)(Time)] = dollar-years

Page 38: CHAPTER-3

Difference in Repayment Plans

Plan

Total Interest Paid

Area Under Curve (dollar-

years)

Ratio of Total Interest Paid to Area Under

Curve

1 $1200 15,000 0.08

2 2000 25,000 0.08

3 1260 15,767 0.08

4 2347 29,334 0.08

The dollar-years for the four plans would be as follows:

Plan 1 Plan 2 Plan 3 Plan 4

(Money owed in Year 1)(1year)

$5,000 $5,000 $5,000 $5,000

(Money owed in Year 2)(1year)

4,000 5,000 4,148 5,400

(Money owed in Year 3)(1year)

3,000 5,000 3,227 5,832

(Money owed in Year 4)(1year)

2,000 5,000 2,223 6,299

(Money owed in Year 5)(1year)

1,000 5,000 1,159 6,803

Total dollar-years $15,000 $25,000 $15,767 $29,334

Page 39: CHAPTER-3

Equivalence is Dependent on Interest Rate

Year

Amount Owed at Beginning of

Year

9% Interest for

Year

Total End-of-Year Payment ($1000 plus Interest)

1 $1200 15,000 0.08

2 2000 25,000 0.08

3 1260 15,767 0.08

4 2347 29,334 0.08

Plan Repay a present sum of

1 $4,877

2 4806

3 4870

4 4,775

• Interest rate increased to 9%

• Each plan repay a sum less than $5,000

• Equivalent present sum at 9%

Page 40: CHAPTER-3

Revised Year

End-of-Year Payments Plan 1 Plan 2

1 $1450 $450

2 1360 450

3 1270 450

4 1180 450

5 1090 5450

Equivalence is Dependent on Interest Rate