6
Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

Embed Size (px)

DESCRIPTION

Integrating factor (Do not forget!) x y

Citation preview

Page 1: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

Chapter 17

Section 17.4The Double Integral as the Limit of a

Riemann Sum; Polar Coordinates

Page 2: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

Polar CoordinatesAny point in the plane can be obtained by knowing r, the distance the point is from the origin and the angle the point makes with the positive x-axis. The values are called the polar coordinates of the point.

(π‘₯ , 𝑦 )

y

x

π‘Ÿ

Conversions:

Polar to Rectangular:

Rectangular to Polar: πœƒ

Polar coordinates are used to describe curves that have complicated rectangular equations and make them simpler (at least from a calculus perspective (i.e. integrating)).Circles centered at the origin.

4 3 2 1 1 2 3 4

4 3 2 1

12

34

Cardioid. 3 leafed rose. Spiral.

1 2 3 4

2

1

1

2

3 2 1 1 2 3

4 3 2 1

1

2

2 1 1 2 3

2

1

1

2

Page 3: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

Double Integrals and Polar CoordinatesA double integral in rectangular coordinates can be switched to a double integral in polar coordinates by replacing all x’s on the integrand by and all y’s in the integrand by . We need to multiply by the integrating factor .

∬Ω π‘‘π‘’π‘ π‘π‘Ÿπ‘–π‘π‘’π‘‘

π‘–π‘›π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿπ‘π‘œπ‘œπ‘Ÿπ‘–π‘›π‘Žπ‘‘π‘’π‘ 

❑

𝑓 (π‘₯ , 𝑦 )𝑑𝐴= ∬Ω π‘‘π‘’π‘ π‘π‘Ÿπ‘–π‘π‘’π‘‘π‘–π‘› π‘π‘œπ‘™π‘Žπ‘Ÿ

π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ 

❑

𝑓 (π‘Ÿ cosπœƒ ,π‘Ÿ sin πœƒ )π‘Ÿ π‘‘π‘Ÿπ‘‘ πœƒIntegrating factor (Do not forget!)

Polar Descriptions of RegionsThe region is no longer thought of as top and bottom or left and right curves. It must be thought of as outer and inner curve between a starting angle and an ending angle . The angles and for a (which is the most common) must continuously bound between the outer and inner curves.

βˆ¬Ξ©π‘‘π‘’π‘ π‘π‘Ÿπ‘–π‘π‘’π‘‘π‘–π‘› π‘π‘œπ‘™π‘Žπ‘Ÿ

π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ 

❑

h (π‘Ÿ ,πœƒ )π‘‘π‘Ÿ π‘‘πœƒ= βˆ«π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘”π‘Žπ‘›π‘”π‘™π‘’

π‘’π‘›π‘‘π‘–π‘›π‘”π‘Žπ‘›π‘”π‘™π‘’

βˆ«π‘–π‘›π‘›π‘’π‘Ÿπ‘π‘’π‘Ÿπ‘£π‘’

π‘œπ‘’π‘‘π‘’π‘Ÿπ‘π‘’π‘Ÿπ‘£π‘’

h (π‘Ÿ ,πœƒ )π‘‘π‘Ÿ π‘‘πœƒ=βˆ«πœƒ 1

πœƒ 2

∫𝜌1 (πœƒ )

𝜌2 (πœƒ )

h (π‘Ÿ , πœƒ )π‘‘π‘Ÿ π‘‘πœƒ

π‘Ÿ=𝜌2 (πœƒ )

x

y

πœƒ1

πœƒ2

π‘Ÿ=𝜌1 (πœƒ )Ξ©

Page 4: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

ExampleFind the integral to the right where is the region in the first quadrant inside the circle , outside the circle and above the line .

0.5 1 .0 1 .5 2 .0

0 .5

1 .0

1 .5

2 .0

∬Ω

❑

8 π‘₯2𝑑𝐴

First we graph and get the curves in polar form to determine the outside and inside curves.

π‘Ÿ=2

π‘Ÿ=1

πœ‹4

πœ‹2

Ω∬Ω

❑

8 π‘₯2𝑑𝐴= ∬Ω π‘–π‘›π‘π‘œπ‘™π‘Žπ‘Ÿ

❑

8π‘Ÿ 2cos2πœƒπ‘Ÿ π‘‘π‘Ÿ π‘‘πœƒ

ΒΏβˆ«πœ‹4

πœ‹2

∫1

2

8π‘Ÿ3 cos2πœƒπ‘‘π‘Ÿ π‘‘πœƒ

ΒΏβˆ«πœ‹4

πœ‹2

2π‘Ÿ4 cos2πœƒ|12π‘‘πœƒ=∫

πœ‹4

πœ‹2

32cos2πœƒβˆ’2cos2πœƒπ‘‘πœƒ=βˆ«πœ‹4

πœ‹2

30 cos2πœƒ π‘‘πœƒ

ΒΏβˆ«πœ‹4

πœ‹2

30 ( 1+cos (2πœƒ )2 )π‘‘πœƒ=∫

πœ‹4

πœ‹2

15+15cos (2πœƒ )π‘‘πœƒ=15πœƒ+152sin (2πœƒ )|πœ‹

4

πœ‹2

ΒΏ 15πœ‹2βˆ’( 15πœ‹4 + 15

2 )=15πœ‹4 βˆ’ 152

=152 ( πœ‹2 βˆ’1)

Page 5: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

ExampleFind the integral to the right for the region inside the circle and outside the cardioid .

∬Ω

❑ π‘₯π‘₯2+𝑦 2

𝑑𝐴

First graph the region and find the angles where the curves intersect.

4 3 2 1 1 2

2

1

1

2

and

You might be tempted to use the angles and , but this would get the wrong part of the region. Need to use the angles and . and

π‘Ÿ=2cosπœƒ

π‘Ÿ=2βˆ’2cosπœƒπœ‹3

βˆ’πœ‹3

∬Ω

❑ π‘₯π‘₯2+𝑦 2

𝑑𝐴=βˆ«βˆ’πœ‹3

πœ‹3

∫2βˆ’2c osπœƒ

2cosπœƒ π‘Ÿ cos πœƒπ‘Ÿ2

π‘Ÿ π‘‘π‘Ÿ π‘‘πœƒ=βˆ«βˆ’πœ‹3

πœ‹3

∫2βˆ’2c os πœƒ

2cosπœƒ

cosπœƒ π‘‘π‘Ÿ π‘‘πœƒ

ΒΏ βˆ«βˆ’πœ‹3

πœ‹3

π‘Ÿ cosπœƒ|2βˆ’2cosπœƒ2cosπœƒ π‘‘πœƒ=∫

βˆ’πœ‹3

πœ‹3

2cos2πœƒβˆ’2cosπœƒ+2cos2πœƒπ‘‘πœƒ=βˆ«βˆ’πœ‹3

πœ‹3

4cos2πœƒβˆ’2cosπœƒ π‘‘πœƒ

ΒΏ βˆ«βˆ’πœ‹3

πœ‹3

4 (1+cos (2 πœƒ )2 )βˆ’2cosπœƒ π‘‘πœƒ=∫

βˆ’πœ‹3

πœ‹3

2+2cos (2πœƒ )βˆ’2cosπœƒ π‘‘πœƒ=2πœƒ+sin (2πœƒ )βˆ’2sin πœƒ|βˆ’πœ‹3

πœ‹3

ΒΏ 2πœ‹3

+ √32βˆ’βˆš3βˆ’(βˆ’2πœ‹3 βˆ’ √3

2+√3)=4πœ‹3 +√3βˆ’2√3=4πœ‹3 βˆ’βˆš3

Page 6: Chapter 17 Section 17.4 The Double Integral as the Limit of a Riemann Sum; Polar Coordinates

ExampleSometimes you might need to convert a rectangular integral to polar like the integral to the right.

βˆ«βˆ’1

1

∫0

√1βˆ’π‘¦2

√π‘₯2+𝑦 2𝑑π‘₯𝑑𝑦

First graph the region.

0 .2 0 .4 0 .6 0 .8 1 .0

1 .0

0 .5

0 .5

1 .0

π‘Ÿ=1

πœ‹2

βˆ’πœ‹2

βˆ«βˆ’1

1

∫0

√1βˆ’π‘¦2

√π‘₯2+𝑦 2𝑑π‘₯𝑑𝑦=βˆ«βˆ’πœ‹2

πœ‹2

∫0

1

π‘Ÿ π‘Ÿ π‘‘π‘Ÿ π‘‘πœƒ

ΒΏ βˆ«βˆ’πœ‹2

πœ‹2

∫0

1

π‘Ÿ 2π‘‘π‘Ÿ π‘‘πœƒ

ΒΏ βˆ«βˆ’πœ‹2

πœ‹213π‘Ÿ 3|

0

1

π‘‘πœƒ

ΒΏ βˆ«βˆ’πœ‹2

πœ‹213π‘‘πœƒ

ΒΏ 13πœƒ|βˆ’πœ‹

2

πœ‹2

ΒΏπœ‹6 βˆ’

βˆ’ πœ‹6 =

πœ‹3