45
Chapter 14 Output Stages and Power Amplifiers 14.1 General Considerations 14.2 Emitter Follower as Power Amplifier 14.3 Push-Pull Stage 14.4 Improved Push-Pull Stage 14.5 Large-Signal Considerations 14.6 Short Circuit Protection 14.7 Heat Dissipation 14.8 Efficiency 14.9 Power Amplifier Classes 1

Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

  • Upload
    others

  • View
    6

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Chapter 14 Output Stages and Power Amplifiers

14.1 General Considerations

14.2 Emitter Follower as Power Amplifier

14.3 Push-Pull Stage

14.4 Improved Push-Pull Stage

14.5 Large-Signal Considerations

14.6 Short Circuit Protection

14.7 Heat Dissipation

14.8 Efficiency

14.9 Power Amplifier Classes

1

Page 2: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Why Power Amplifiers?

Drive a load with high power.

Cellular phones need 1W of power at the antenna.

Audio systems deliver tens to hundreds of watts of power.

Ordinary Voltage/Current amplifiers are not suitable for

such applications

2CH 13 Output Stages and Power Amplifiers

Page 3: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Chapter Outline

3CH 13 Output Stages and Power Amplifiers

Page 4: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Power Amplifier Characteristics

Experiences low load resistance.

Delivers large current levels.

Requires large voltage swings.

Draws a large amount of power from supply.

Dissipates a large amount of power, therefore gets “hot”.

4CH 13 Output Stages and Power Amplifiers

Page 5: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Power Amplifier Performance Metrics

Distortion - Linearity

Power Efficiency

Voltage Rating – Transistor Breakdown voltage

5CH 13 Output Stages and Power Amplifiers

Page 6: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Emitter Follower Large-Signal Behavior I

As Vin increases Vout also follows and Q1 provides more current.

6CH 13 Output Stages and Power Amplifiers

1

For 8 ,

1/ 0.8 , thus, 32.5 mA

v L L m

L

m C

A R R g

R

g I

For Vin=4.8V, Vout=4.0V, IL=500mA, IE1=532.5mA

Page 7: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Emitter Follower Large-Signal Behavior II

For Vin=0.8V, Vout=0V, IL=0mA, IE1=32.5mA

For Vin=0.7V, Vout=-0.1V, IL=12.5mA, IE1=20mA

When all current (32.5mA) flows to the load, Vout=-0.26V

7CH 13 Output Stages and Power Amplifiers

However, as Vin decreases, Vout also decreases, shutting off Q1 and resulting in a constant Vout.

Page 8: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.1: Emitter Follower

For 0.5

211 mV by a few iterations

in

out

V V

V

8CH 13 Output Stages and Power Amplifiers

1 1 1

1 1

1

,

ln( / )

1ln

outin BE out C

L

BE T C S

outin T out

L S

VV V V I I

R

V V I I

VV V I V

R I

Vin=0.5V, Vout=?

Page 9: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.1: Emitter Follower

11 1ln C

in T C LS

IV V I I R

I

9CH 13 Output Stages and Power Amplifiers

For what Vin, Q1 carries only 1% of I1?

1 1For 0.01

390 mV

C

in

I I

V

Page 10: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Linearity of an Emitter Follower

As Vin decreases the output waveform will be clipped,

introducing nonlinearity in I/O characteristics.

10CH 13 Output Stages and Power Amplifiers

Page 11: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Push-Pull Stage

As Vin increases, Q1 is on and pushes current into RL.

As Vin decreases, Q2 is on and pulls current out of RL.

11CH 13 Output Stages and Power Amplifiers

Page 12: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.2: I/O Characteristics for Large Vin

For positive Vin, Q1 shifts the output down and for negative Vin,

Q2 shifts the output up.

Vout = Vin-VBE1 for large +Vin

Vout = Vin+|VBE2| for large -Vin

12CH 13 Output Stages and Power Amplifiers

Page 13: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Overall I/O Characteristics of Push-Pull Stage

However, for small Vin, there is a “dead zone” (both Q1 and Q2

are off) in the I/O characteristic, resulting in gross nonlinearity.

13CH 13 Output Stages and Power Amplifiers

Page 14: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.3: Small-Signal Gain of Push-Pull Stage

The push-pull stage exhibits a gain that tends to unity when

either Q1 or Q2 is on.

When Vin is very small, the gain drops to zero.

14CH 13 Output Stages and Power Amplifiers

Page 15: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.4: Sinusoidal Response of Push-Pull Stage

For large Vin, the output follows the input with a fixed DC offset, however as Vin becomes small the output drops to zero and causes “Crossover Distortion.”

15CH 13 Output Stages and Power Amplifiers

Page 16: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Improved Push-Pull Stage

With a battery of VB inserted between the bases of Q1 and Q2,

the dead zone is eliminated.

VB = VBE1 + |VBE2|

16CH 13 Output Stages and Power Amplifiers

Page 17: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Implementation of VB

Since VB=VBE1+|VBE2|, a natural choice would be two diodes in

series.

I1 in figure (b) is used to bias the diodes and Q1.17CH 13 Output Stages and Power Amplifiers

Page 18: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.6: Current Flow I

Iin

18CH 13 Output Stages and Power Amplifiers

1 1 2in B BI I I I

1 2Usually unless 0

flows even when = 0.

B B out

in out

I I V

I V

Page 19: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.8: Current Flow II

19CH 13 Output Stages and Power Amplifiers

1 20 when 0 if in outI V I I

→1D BEV V

out inV V

Page 20: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Addition of CE Stage

A CE stage (predriver) is added to provide voltage gain from

the input to the bases of Q1 and Q2.20CH 13 Output Stages and Power Amplifiers

Page 21: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Bias Point Analysis

For bias point analysis for Vout=0, the circuit can be simplified

to the one on the right, which resembles a current mirror.

VA=0Vout=0

21CH 13 Output Stages and Power Amplifiers

, 1

1 3

, 1

S Q

C C

S D

II I

I

Page 22: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Small-Signal Analysis

Assuming 2rD is small and (gm1+gm2)RL is much greater than 1,

22CH 13 Output Stages and Power Amplifiers

4 1 2

4 1 2 1 2 1 2

4 1 2 1 2

( 1)

1

v m L

m m m L

m m m L

A g r r R

g r r r r g g R

g r r g g R

Page 23: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.9: Output Resistance Analysis

3 4

1 2 1 2 1 2

||1

( )( || )

O Oout

m m m m

r rR

g g g g r r

If β is low, the second term of the output resistance will rise,

which will be problematic when driving a small resistance.23CH 13 Output Stages and Power Amplifiers

Page 24: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example14.10: Biasing

24CH 13 Output Stages and Power Amplifiers

1 2

Predriver (CE stage): 5

OutputStage: 0.8 for 8

2 100,

V

V L

npn pnp C C

A

A R

I I

Compute the required bias current.

1 1

1 2 1 2

1 2

1 2

4 1 2 1 2

1

4 4

2 4

Thus, 6.5 mA

|| 400 || 200 133

|| 1 4

133 195 μA

m m m m

C C

m m m L

m C

g g g g

I I

r r

g r r g g R

g I

65uA

135uA

6.5mA

6.5mA

195uA

60uA

125uA

Page 25: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Problem of Base Current

195 µA of base current in Q1 can only support 19.5 mA of

collector current, insufficient for high current operation (500 mA

for 4 V on 8 ). 25CH 13 Output Stages and Power Amplifiers

Page 26: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Modification of the PNP Emitter Follower

Instead of having a single PNP as the emitter-follower, it is now

combined with an NPN (Q2), providing a lower output

resistance.

2 3

1

1out

m

Rg

26CH 13 Output Stages and Power Amplifiers

Page 27: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.11: Input Resistance

2 33

1

11

out L

inL

m

v R

vR

gr

27CH 13 Output Stages and Power Amplifiers

2 32 3

3

Comparing with the standard EF,

1 1

1 11

outm

m

rg

gr

Page 28: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.11: Input Resistance

3

2 3

3 2 3

1

1

1

( 1)

Lin in in

Lm

in L

Ri v v

rR

g

r R r

28CH 13 Output Stages and Power Amplifiers

Page 29: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Additional Bias Current

I1 is added to the base of Q2 to provide an additional bias

current to Q3 so the capacitance at the base of Q2 can be

charged/discharged quickly. Additional pole at the base of Q2.29CH 13 Output Stages and Power Amplifiers

Page 30: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

2

0in

out EB

MinV

V V

Example 14.12: Minimum Vin

30CH 13 Output Stages and Power Amplifiers

2

3 2

in BE

out EB BE

Min V V

V V V

Page 31: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Power Amplifier Classes

Class A: High linearity, low efficiency

Class B: High efficiency, low linearity

Class AB: Compromise between

Class A and B

31CH 13 Output Stages and Power Amplifiers

Page 32: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

HiFi Design

As Vout becomes more positive, gm rises and Av comes closer to

unity, resulting in nonlinearity.

Using negative feedback, linearity is improved, providing higher

fidelity.

32CH 13 Output Stages and Power Amplifiers

Page 33: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Short-Circuit Protection

Qs and r are used to “steal” some base current away from Q1

when the output is accidentally shorted to ground, preventing

short-circuit damage.33CH 13 Output Stages and Power Amplifiers

Page 34: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Power transistors

Package and heat sink

Small-signal Transistor

Power Transistor in Heat Sink Power Transistor Inside

Page 35: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Emitter Follower Power Rating (Class A)

0

10

2

1 1 1

1

sin1sin

if 2

T

av C CE

TP

CC PL

P P PCC CC

L L

P I V dtT

V tI V V t dt

T R

V V VI V I V I

R R

Maximum power dissipated across Q1 occurs in the absence of

a signal.35CH 13 Output Stages and Power Amplifiers

Pull down is done

by a current source

with huge current!

Page 36: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.13: Power Dissipation

1 10

1

1sin

T

I p EE

EE

P I V t V dtT

I V

36CH 13 Output Stages and Power Amplifiers

Avg Power Dissipated in the Current Source I1

Page 37: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Push-Pull Stage Power Rating

/2

, 0

/2

0

2

1

sin1sin

4 4

T

av NPN C CE

TP

CC PL

CC P CCP P P

L L L

P I V dtT

V tV V t dt

T R

V V VV V V

R R R

No power for half of the period.

37CH 13 Output Stages and Power Amplifiers

Page 38: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Push-Pull Stage Power Rating

/2

, 0

/2

0

2

1

sin1sin

4 4

T

av NPN C CE

TP

CC PL

CC P CCP P P

L L L

P I V dtT

V tV V t dt

T R

V V VV V V

R R R

No power for half of the period.

Maximum power occurs between Vp=0 and 4Vcc/π.

38CH 13 Output Stages and Power Amplifiers

2

,max 2 when 2CC P CC

av P

L

V V VP V

R

Page 39: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Push-Pull Stage Power Rating

Maximum power occurs between Vp=0 and 4VCC/π.

39CH 13 Output Stages and Power Amplifiers

, , when av PNP av NPN CC EEP P V V

2

,max 2 when 2CC P CC

av P

L

V V VP V

R

, /2

/2

2

1

sin1sin

4 4

T

av PNP C CET

TP

P EETL

EE P P P EE P

L L L

P I V dtT

V tV t V dt

T R

V V V V V V

R R R

Page 40: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Heat Sink

Heat sink, provides large surface area to dissipate heat from

the chip.

40CH 13 Output Stages and Power Amplifiers

Page 41: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Thermal Runaway Mitigation

1 21 2

, 1 , 2

1 2

, 1 , 2

1 21 2

, 1 , 2

1 2

, 1 , 2

1 21 2

, 1 , 2 , 1 , 2

ln ln

ln

ln ln

ln

With the same ,

D DD D T T

S D S D

D DT

S D S D

C CBE BE T T

S Q S Q

C CT

S Q S Q

T

C CD D

S D S D S Q S Q

I IV V V V

I I

I IV

I I

I IV V V V

I I

I IV

I I

V

I II I

I I I I

Using diode biasing prevents thermal runaway since the

currents in Q1 and Q2 will track those of D1 and D2 as long as

their Is’s track with temperature.41CH 13 Output Stages and Power Amplifiers

Page 42: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Efficiency

Power Delivered to Load

Power Drawn From Supply Voltage

out

out ckt

P

P P

Efficiency is defined as the average power delivered to the load divided by the power drawn from the supply

Emitter Follower (Class A)

2

21 1

1

2

2 2

if and4

P LEF

P L CC P EE

P PEE CC

CC L

V R

V R I V V I V

V VI V V

V R

42CH 13 Output Stages and Power Amplifiers

Maximum efficiency for EF is 25%.

Page 43: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.15: Efficiency of EF

43CH 13 Output Stages and Power Amplifiers

1

2

21 1

2

2

/ 2

With = and

2

2 2

2

2 2

Thus,

16.7%

15P CC

CCPEE CC

L L

P LEF

P L CC P EE

P L

CC CCP L CC P CC

L L

EF V V

VVI V V

R R

V R

V R I V V I V

V R

V VV R V V V

R R

EF designed for full swing operates with half swing.

Page 44: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Efficiency

Push-Pull Stage (Class A or AB)

2

2

2

2

2 4

4

P

LPP

CCP P P

L L

P

CC

V

R

VV V V

R R

V

V

44CH 13 Output Stages and Power Amplifiers

Maximum efficiency for PP is 78.5%.

Page 45: Chapter 13 Output Stages and Power Amplifiersocw.snu.ac.kr/sites/default/files/NOTE/ch14_2017.pdf · Power Amplifier Characteristics Experiences low load resistance. Delivers large

Example 14.16: Efficiency incl. Predriver

45CH 13 Output Stages and Power Amplifiers

1

2

2

2( )

1

4

1 1

1 14

P L

P

L

P CC PCC EE

L L

P

CC CC

P

CC

I V R

V

R

V V VV V

R R

V

V V

V

V