83
Chapter 13 Chemical Kine1cs

Chapter 13 Outline

Embed Size (px)

Citation preview

Page 1: Chapter 13 Outline

Chapter  13  Chemical  Kine1cs  

Page 2: Chapter 13 Outline

Kine%cs  •  kine%cs  is  the  study  of  the  factors  that  affect  the  _____  of  a  reac%on  and  the  __________  by  which  a  reac%on  proceeds.  

•  experimentally  it  is  shown  that  there  are  4  factors  that  influence  the  speed  of  a  reac%on:    – nature  of  the  reactants,    –  temperature,    – catalysts,  – concentra1on  

2

Page 3: Chapter 13 Outline

Defining  Rate  

•  _____  is  how  much  a  quan%ty  changes  in  a  given  period  of  %me  

•  the  speed  you  drive  your  car  is  a  rate  –  the  distance  your  car  travels  (miles)  in  a  given  period  of  %me  (1  hour)  –  so  the  rate  of  your  car  has  units  of  mi/hr  

3

Page 4: Chapter 13 Outline

Defining  Reac%on  Rate  

•  the  rate  of  a  chemical  reac%on  is  generally  measured  in  terms  of  how  much  the  concentra%on  of  a  reactant  decreases  in  a  given  period  of  %me  –  or  product  concentra%on  increases  

•  for  reactants,  a  nega%ve  sign  is  placed  in  front  of  the  defini%on  

4

Page 5: Chapter 13 Outline

Reac%on  Rate  Changes  Over  Time  

•  as  %me  goes  on,  the  rate  of  a  reac%on  generally  __________    – because  the  concentra%on  of  the  reactants  decreases.      

•  at  some  %me  the  reac%on  stops,  either  because  the  reactants  run  out  or  because  the  system  has  reached  equilibrium.  

5

Page 6: Chapter 13 Outline

6

at t = 0 [A] = 8 [B] = 8 [C] = 0

at t = 0 [X] = 8 [Y] = 8 [Z] = 0

at t = 16 [A] = 4 [B] = 4 [C] = 4

at t = 16 [X] = 7 [Y] = 7 [Z] = 1

Rate = !" A[ ]"t

= !A[ ] 2

! A[ ]1( )t2 ! t1( )

Rate =Rate = !

" X[ ]"t

= !X[ ] 2

! X[ ]1( )t2 ! t1( )

Rate =

Page 7: Chapter 13 Outline

7

at t = 0 [A] = 8 [B] = 8 [C] = 0

at t = 0 [X] = 8 [Y] = 8 [Z] = 0

at t = 16 [A] = 4 [B] = 4 [C] = 4

at t = 16 [X] = 7 [Y] = 7 [Z] = 1

Rate =! C[ ]!t

=C[ ] 2

" C[ ]1( )t2 " t1( )

Rate =

Rate =! Z[ ]!t

=Z[ ] 2

" Z[ ]1( )t2 " t1( )

Rate =

Page 8: Chapter 13 Outline

8

Rate = !" X[ ]"t

= !X[ ] 2

! X[ ]1( )t2 ! t1( )

Rate =

Rate = !" A[ ]"t

= !A[ ] 2

! A[ ]1( )t2 ! t1( )

Rate =

at t = 16 [A] = 4 [B] = 4 [C] = 4

at t = 16 [X] = 7 [Y] = 7 [Z] = 1

at t = 32 [A] = 2 [B] = 2 [C] = 6

at t = 32 [X] = 6 [Y] = 6 [Z] = 2

Page 9: Chapter 13 Outline

9

Rate =! C[ ]!t

=C[ ] 2

" C[ ]1( )t2 " t1( )

Rate =

at t = 16 [A] = 4 [B] = 4 [C] = 4

at t = 16 [X] = 7 [Y] = 7 [Z] = 1

at t = 32 [A] = 2 [B] = 2 [C] = 6

at t = 32 [X] = 6 [Y] = 6 [Z] = 2

Rate =! Z[ ]!t

=Z[ ] 2

" Z[ ]1( )t2 " t1( )

Rate =

Page 10: Chapter 13 Outline

10

Rate = !" X[ ]"t

= !X[ ] 2

! X[ ]1( )t2 ! t1( )

Rate =

Rate = !" A[ ]"t

= !A[ ] 2

! A[ ]1( )t2 ! t1( )

Rate =

at t = 32 [A] = 2 [B] = 2 [C] = 6

at t = 32 [X] = 6 [Y] = 6 [Z] = 2

at t = 48 [A] = 0 [B] = 0 [C] = 8

at t = 48 [X] = 5 [Y] = 5 [Z] = 3

Page 11: Chapter 13 Outline

11

at t = 32 [A] = 2 [B] = 2 [C] = 6

at t = 32 [X] = 6 [Y] = 6 [Z] = 2

at t = 48 [A] = 0 [B] = 0 [C] = 8

at t = 48 [X] = 5 [Y] = 5 [Z] = 3

Rate =! C[ ]!t

=C[ ] 2

" C[ ]1( )t2 " t1( )

Rate =

Rate =! Z[ ]!t

=Z[ ] 2

" Z[ ]1( )t2 " t1( )

Rate =

Page 12: Chapter 13 Outline

Hypothe%cal  Reac%on  Red  →  Blue  

12

Time (sec)

Number Red

Number Blue

0 100 0 5 84 16

10 71 29 15 59 41 20 50 50 25 42 58 30 35 65 35 30 70 40 25 75 45 21 79 50 18 82

in this reaction, one molecule of Red turns into one molecule of Blue

the number of molecules will always total 100

the rate of the reaction can be measured as the speed of loss of Red molecules over time, or the speed of gain of Blue molecules over time

Page 13: Chapter 13 Outline

Hypothe%cal  Reac%on  Red  →  Blue  

13

100

84

71

59

50

42

35 30

25 21

18

0

16

29

41

50

58

65 70

75 79

82

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

Nu

mb

er o

f M

olec

ule

s

Time (sec)

Concentration vs Time for Red -> Blue

Number Red

Number Blue

Page 14: Chapter 13 Outline

Hypothe%cal  Reac%on  Red  →  Blue  

14

Rate of Reaction Red -> Blue

5, 3.2

10, 2.615, 2.4

20, 1.825, 1.6

30, 1.4

35, 1 40, 145, 0.8

50, 0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50

time, (sec)

Rat

e, Δ

[Blu

e]/Δ

t

Page 15: Chapter 13 Outline

Reac%on  Rate  and  Stoichiometry  •  in  most  reac%ons,  the  coefficients  of  the  balanced  equa%on  are  not  all  the  same  

 •  for  these  reac%ons,  the  change  in  the  number  of  molecules  of  one  substance  is  a  mul%ple  of  the  change  in  the  number  of  molecules  of  another  –  for  the  above  reac%on,  for  every  1  mole  of  H2  used,  1  mole  of  I2  will  also  be  used  and  2  moles  of  HI  made  

–  therefore  the  rate  of  change  will  be  different  •  in  order  to  be  consistent,  the  change  in  the  concentra%on  of  each  substance  is  mul%plied  by  1/coefficient  

15

Page 16: Chapter 13 Outline

a) 0.0014 Ms–1

b) 0.00070 Ms–1

c) 0.0028 Ms–1

d) None of the above are correct

H2O2 can be used as a disinfectant; it decomposes as:

2 H2O2 → 2 H2O + O2

If the rate of appearance of O2 is 0.0014 Ms–1, what is the rate of disappearance of H2O2?

Copyright © 2011 Pearson Education, Inc.

Page 17: Chapter 13 Outline

a) 3.4 x 10–4 M/s

b) 5.9 x 10–4 M/s

c) 4.1 x 10–4 M/s

d) 1.6 x 10–4 M/s

e) 2.1 x 10–4 M/s

Determine the rate of disappearance of NO in the first 100 seconds.

[NO] time (s)

0.100 0 0.078 50 0.059 100 0.043 150 0.031 200

Copyright © 2011 Pearson Education, Inc.

Page 18: Chapter 13 Outline

Average  Rate  

•  the  average  rate  is  the  change  in  measured  __________  in  any  par%cular  %me  period  –  linear  approxima%on  of  a  curve  

•  the  larger  the  %me  interval,  the  more  the  average  rate  deviates  from  the  instantaneous  rate    

18

Page 19: Chapter 13 Outline

Hypothe%cal  Reac%on    Red  →  Blue  

19

Avg. Rate Avg. Rate Avg. Rate

Time (sec)

Number Red

Number Blue

(5 sec intervals)

(10 sec intervals)

(25 sec intervals)

0 100 0 5 84 16 3.2

10 71 29 2.6 2.9 15 59 41 2.4 20 50 50 1.8 2.1 25 42 58 1.6 2.3

30 35 65 1.4 1.5 35 30 70 1 40 25 75 1 1 45 21 79 0.8 50 18 82 0.6 0.7 1

Page 20: Chapter 13 Outline

20

H2 I2 HI

Avg. Rate, M/s Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 1/2 Δ[HI]/Δt 0.000 1.000

10.000 0.819

20.000 0.670

30.000 0.549

40.000 0.449

50.000 0.368

60.000 0.301

70.000 0.247

80.000 0.202

90.000 0.165

100.000 0.135

Avg. Rate, M/s Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 1/2 Δ[HI]/Δt 0.000 1.000 0.000

10.000 0.819 0.362

20.000 0.670 0.660

30.000 0.549 0.902

40.000 0.449 1.102

50.000 0.368 1.264

60.000 0.301 1.398

70.000 0.247 1.506

80.000 0.202 1.596

90.000 0.165 1.670

100.000 0.135 1.730

Stoichiometry tells us that for every 1 mole/L of H2 used, 2 moles/L of HI are made. Assuming a 1 L container, at 10 s, we used 0.181 moles of H2. Therefore the amount of HI made is 2(0.181 moles) = 0.362 moles At 60 s, we used 0.699 moles of H2. Therefore the amount of HI made is 2(0.699 moles) = 1.398 moles

Page 21: Chapter 13 Outline

21

H2 I2 HI

Avg. Rate, M/s Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 1/2 Δ[HI]/Δt 0.000 1.000

10.000 0.819

20.000 0.670

30.000 0.549

40.000 0.449

50.000 0.368

60.000 0.301

70.000 0.247

80.000 0.202

90.000 0.165

100.000 0.135

Avg. Rate, M/s Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 1/2 Δ[HI]/Δt 0.000 1.000 0.000

10.000 0.819 0.362

20.000 0.670 0.660

30.000 0.549 0.902

40.000 0.449 1.102

50.000 0.368 1.264

60.000 0.301 1.398

70.000 0.247 1.506

80.000 0.202 1.596

90.000 0.165 1.670

100.000 0.135 1.730

Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 0.000 1.000 0.000

10.000 0.819 0.362 0.0181

20.000 0.670 0.660 0.0149

30.000 0.549 0.902 0.0121

40.000 0.449 1.102 0.0100

50.000 0.368 1.264 0.0081

60.000 0.301 1.398 0.0067

70.000 0.247 1.506 0.0054

80.000 0.202 1.596 0.0045

90.000 0.165 1.670 0.0037

100.000 0.135 1.730 0.0030

The average rate is the change in the concentration in a given time period.

Page 22: Chapter 13 Outline

22

H2 I2 HI

Avg. Rate, M/s Avg. Rate, M/s

Time (s) [H2], M [HI], M -Δ[H2]/Δt 1/2 Δ[HI]/Δt 0.000 1.000 0.000

10.000 0.819 0.362 0.0181 0.0181

20.000 0.670 0.660 0.0149 0.0149

30.000 0.549 0.902 0.0121 0.0121

40.000 0.449 1.102 0.0100 0.0100

50.000 0.368 1.264 0.0081 0.0081

60.000 0.301 1.398 0.0067 0.0067

70.000 0.247 1.506 0.0054 0.0054

80.000 0.202 1.596 0.0045 0.0045

90.000 0.165 1.670 0.0037 0.0037

100.000 0.135 1.730 0.0030 0.0030

Page 23: Chapter 13 Outline

23

Concentration vs. Time for H2 + I2 --> 2HI

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

time, (s)

conc

entr

atio

n, (M

)

[H2], M

[HI], M

average rate in a given time period = - slope of the line connecting the _____ points; and ½ +slope of the line for _____

the average rate for the first 10 s is 0.0181 M/s

the average rate for the first 40 s is 0.0150 M/s

Page 24: Chapter 13 Outline

Instantaneous  Rate  

•  the  instantaneous  rate  is  the  change  in  concentra%on  at  any  one  par%cular  %me  – slope  at  __________  of  a  curve  

•  determined  by  taking  the  slope  of  a  line  ______  to  the  curve  at  that  par%cular  point  – _______________  of  the  func%on  

24

Page 25: Chapter 13 Outline

H2  (g)  +  I2  (g)  →  2  HI  (g)    

25

Using [H2], the instantaneous rate at 50 s is:

Using [HI], the instantaneous rate at 50 s is:

Page 26: Chapter 13 Outline

Example  -­‐  For  the  reac%on  given,  the  [I-­‐]  changes  from  2.000  M  to  0.735  M  in  the  first  25  s.    Calculate  the  average  rate  in  the  

first  25  s  and  the  Δ[H+].  H2O2  (aq)  +  3  I-­‐(aq)  +  2  H+

(aq)  →  I3-­‐(aq)  +  2  H2O(l)  

Solve the equation for the Rate (in terms of the change in concentration of the Given quantity)

Solve the equation of the Rate (in terms of the change in the concentration for the quantity to Find) for the unknown value

Rate = ! 13"

#$%

&'([I! ](t

=

Rate =

Rate = ![H+ ]!t

=

![H+ ]!t

=

Page 27: Chapter 13 Outline

Measuring  Reac%on  Rate  •  in  order  to  measure  the  reac%on  rate  you  need  to  be  able  to  measure  the  concentra%on  of  at  least  one  component  in  the  mixture  at  many  points  in  %me  

•  there  are  two  ways  of  approaching  this  problem    •  (1)  for  reac%ons  that  are  complete  in  less  than  1  hour,  it  is  best  to  use  __________  monitoring  of  the  concentra%on,    

•  (2)  for  reac%ons  that  happen  over  a  very  long  %me,  _________  of  the  mixture  at  various  %mes  can  be  used  –  when  sampling  is  used,  o`en  the  reac%on  in  the  sample  is  stopped  by  a  quenching  technique  

27

Page 28: Chapter 13 Outline

Factors  Affec%ng  Reac%on  Rate  Nature  of  the  Reactants  

•  nature  of  the  reactants  means  what  kind  of  reactant  molecules  and  what  physical  condi%on  they  are  in.      –  small  molecules  tend  to  react  _____  than  large  molecules;    –  gases  tend  to  react  _____  than  liquids  which  react  _____  than  solids;    

–  powdered  solids  are  _____  reac%ve  than  “blocks”  •  more  surface  area  for  contact  with  other  reactants  

–  certain  types  of  chemicals  are  more  reac%ve  than  others  •  e.g.,  the  ac%vity  series  of  metals    

–  ions  react  faster  than  molecules    •  no  bonds  need  to  be  broken  

28

Page 29: Chapter 13 Outline

Factors  Affec%ng  Reac%on  Rate  Temperature  

•  increasing  temperature  _________  reac%on  rate  – chemist’s  rule  of  thumb  -­‐  for  each  10°C  rise  in  temperature,  the  speed  of  the  reac%on  doubles  

•  for  many  reac%ons  

•  there  is  a  mathema%cal  rela%onship  between  the  absolute  temperature  and  the  speed  of  a  reac%on  discovered  by  Svante  Arrhenius  which  will  be  examined  later  

29

Page 30: Chapter 13 Outline

Factors  Affec%ng  Reac%on  Rate  Catalysts  

•  catalysts  are  substances  which  affect  the  speed  of  a  reac%on  _______________consumed.      – homogeneous  =  present  in  _____  phase  – heterogeneous  =  present  in  ______  phase  

•  how  catalysts  work  will  be  examined  later  

30

Page 31: Chapter 13 Outline

Factors  Affec%ng  Reac%on  Rate  Reactant  Concentra%on  

•  generally,  the  larger  the  concentra%on  of  reactant  molecules,  the  _____  the  reac%on    –  increases  the  __________  of  reactant  molecule  contact  

– concentra%on  of  gases  depends  on  the  par%al  pressure  of  the  gas    • higher  pressure  =  higher  concentra%on  

•  concentra%on  of  solu%ons  depends  on  the  solute  to  solu%on  ra%o  (__________)  

31

Page 32: Chapter 13 Outline

The  Rate  Law  •  the  Rate  Law  of  a  reac%on  is  the  mathema%cal  rela%onship  

between  the  rate  of  the  reac%on  and  the  concentra%ons  of  the  reactants  –  and  homogeneous  catalysts  as  well  

•  the  rate  of  a  reac%on  is  _______________  to  the  concentra%on  of  each  reactant  raised  to  a  power  

•  for  the  reac%on  nA  +  mB  →  products  the  rate  law  would  have  the  form  given  below  –  n  and  m  are  called  the  _____  for  each  reactant  –  k  is  called  the  __________  

32

Page 33: Chapter 13 Outline

The  Integrated  Rate  Law  

•  Rela%onship  between  the  concentra%on  of  reactants  and  %me  

•  Obtained  from  integra%on  of  differen%al  rate  laws  

•  It  has  the  form  of  an  equa%on  for  a  straight  line        y  =  mx  +  b  

33

Page 34: Chapter 13 Outline

Reac%on  Order  •  the  exponent  on  each  reactant  in  the  rate  law  is  called  the  _____  with  respect  to  that  __________  

•  the  sum  of  the  exponents  on  the  reactants  is  called  the  _______________  

•  The  rate  law  for  the  reac%on:  

34

2 NO(g) + O2(g) → 2 NO2(g)

is Rate = The reaction is

second order with respect to [NO], first order with respect to [O2],

and third order overall

Page 35: Chapter 13 Outline

Reactant  Concentra%on  vs.  Time  A  →  Products  

35

Page 36: Chapter 13 Outline

Half-­‐Life  •  the  half-­‐life,  ___,    of  a  reac%on  is  the  length  of  %me  it  takes  for  the  concentra%on  of  the  reactants  to  fall  ____  its  ini%al  value  

•  the  half-­‐life  of  the  reac%on  depends  on  the  _____  of  the  reac%on  

36

Page 37: Chapter 13 Outline

Zero  Order  Reac%ons  •  Rate  =        =    

– constant  rate  reac1ons  •  Integrated  Rate  Law:  [A]  =    •  graph  of  [A]  vs.  %me  is  straight  line  with  slope  =  ___  and  y-­‐intercept  =  ____  

•  t  ½  =    •  when  Rate  =  M/sec,  k  =  M/sec  

37

[A]0

[A]

time

Page 38: Chapter 13 Outline

Half  Life  from  Rate  Law  

38

Page 39: Chapter 13 Outline

First  Order  Reac%ons  •  Rate  =    •  Integrated  Rate  Law:  ln[A]  =    •  graph  ln[A]  vs.  %me  gives  straight  line  with  slope  =  ___  and  y-­‐

intercept  =  ______  –  used  to  determine  the  rate  constant  

•  t½  =    •  the  half-­‐life  of  a  first  order  reac1on  is  constant  •  the  when  Rate  =  M/sec,  k  =  sec-­‐1  

39

ln[A]0

ln[A]

time

Page 40: Chapter 13 Outline

Second  Order  Reac%ons  •  Rate  =    •  Integrated  Rate  Law:  1/[A]  =    •  graph  1/[A]  vs.  %me  gives  straight  line  with  slope  =  __  and  

y-­‐intercept  =  ____  –  used  to  determine  the  rate  constant  

•  t½  =    •  when  Rate  =  M/sec,  k  =  M-­‐1·sec-­‐1  

40

l/[A]0

1/[A]

time

Page 41: Chapter 13 Outline

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions

Order Rate Law Concentration-Time

Equation Half-Life

0

1

2

rate = k

rate = k [A]

rate = k [A]2

ln[A] = ln[A]0 - kt

1 [A]

= 1

[A]0 + kt

[A] = [A]0 - kt

t½ ln2 k

=

t½ = [A]0 2k

t½ = 1 k[A]0

13.3

Page 42: Chapter 13 Outline

Ex.  13.4  –  The  reac%on  SO2Cl2(g)  →  SO2(g)  +  Cl2(g)  is  first  order  with  a  rate  constant  of  2.90  x  10-­‐4  s-­‐1  at  a  given  set  of  condi%ons.  Find  the  [SO2Cl2]  at  

865  s  when  [SO2Cl2]0  =  0.0225  M    

the new concentration is less than the original, as expected

[SO2Cl2]0 = 0.0225 M, t = 865, k = 2.90 x 10-4 s-1

[SO2Cl2]

Check:

Solution:

Concept Plan:

Relationships:

Given:

Find:

[SO2Cl2] [SO2Cl2]0, t, k

for a 1st order process:

ln[SO2Cl2 ]=ln[SO2Cl2 ]=ln[SO2Cl2 ]=[SO2Cl2 ]=

Page 43: Chapter 13 Outline

What is the order of a reaction that has the following time and concentration data?

Time (s) [Concentration] 0 0.01000 50 0.00887 100 0.00797 150 0.00723 200 0.00662 250 0.00611

a)  Zero order b)  First order c)  Second order d)  None of the above

Copyright © 2011 Pearson Education, Inc.

Page 44: Chapter 13 Outline

a) Second order

b) Third order

c) Fourth order

d) Fifth order e) Sixth order

Determine the overall order for a reaction with the following rate law.

Rate = k[A]2[B][C]3

Copyright © 2011 Pearson Education, Inc.

Page 45: Chapter 13 Outline

Prac%ce  -­‐  Determine  the  Rate  Equa%on  for  the  Reac%on    A  →  2  Prod  

45

[A], (M) [Prod], (M) Time (sec) ln([A]) 1/[A]

0.100 0 0 -2.3 10

0.067 0.066 50 -2.7 15

0.050 0.100 100 -3.0 20

0.040 0.120 150 -3.2 25

0.033 0.134 200 -3.4 30

0.029 0.142 250 -3.5 35

Page 46: Chapter 13 Outline

46

[A] vs. Time

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250

time, (s)

conc

entr

atio

n, M

Page 47: Chapter 13 Outline

47

LN([A]) vs. Time

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

0 50 100 150 200 250

time, (s)

Ln(c

once

ntra

tion)

Page 48: Chapter 13 Outline

48

1/([A]) vs. Timey = 0.1x + 10

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

time, (s)

inve

rse

conc

entr

atio

n, M

-1

Page 49: Chapter 13 Outline

Ini%al  Rate  Method  •  another  method  for  determining  the  order  of  a  reactant  is  to  see  the  effect  on  the  ini%al  rate  of  the  reac%on  when  the  ini%al  concentra%on  of  that  reactant  is  changed  –  for  mul1ple  reactants,  keep  ini1al  concentra1on  of  all  reactants  constant  except  one  

–  zero  order  =  changing  the  concentra%on  has  _____  on  the  rate  

–  first  order  =  the  rate  changes  by  the  _____  _____as  the  concentra%on  

•  doubling  the  ini%al  concentra%on  will  double  the  rate  –  second  order  =  the  rate  changes  by  the  _____  of  the  factor  the  concentra%on  changes  

•  doubling  the  ini%al  concentra%on  will  quadruple  the  rate  

49

Page 50: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

50

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

Write a general rate law including all reactants Examine the data and find two experiments in which the concentration of one reactant changes, but the other concentrations are the same

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

Comparing Expt #1 and Expt #2, the [NO2] changes but the [CO] does not

Rate =

Page 51: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

51

Determine by what factor the concentrations and rates change in these two experiments.

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

[NO2 ]expt 2

[NO2 ]expt 1

=Rateexpt 2

Rateexpt 1

=

Page 52: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

52

Determine to what power the concentration factor must be raised to equal the rate factor.

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

[NO2 ]expt 2

[NO2 ]expt 1

!

"##

$

%&&

n

=Rateexpt 2

Rateexpt 1

Page 53: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

53

Repeat for the other reactants

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

[CO]expt 3

[CO]expt 2

=Rateexpt 3

Rateexpt 2

=

[CO]expt 3

[CO]expt 2

!

"##

$

%&&

m

=Rateexpt 3

Rateexpt 2

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

Page 54: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

54

Substitute the exponents into the general rate law to get the rate law for the reaction

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

mnk [CO]][NO Rate 2=n = 2, m = 0

Rate = Rate =

Page 55: Chapter 13 Outline

Ex  13.2  –  Determine  the  rate  law  and  rate  constant  for  the  reac%on  NO2(g)  +  CO(g)  →  NO(g)  +  CO2(g)    

given  the  data  below.  

55

Substitute the concentrations and rate for any experiment into the rate law and solve for k

Expt. Number

Initial [NO2], (M)

Initial [CO], (M)

Initial Rate (M/s)

1. 0.10 0.10 0.0021 2. 0.20 0.10 0.0082 3. 0.20 0.20 0.0083 4. 0.40 0.10 0.033

Rate = k[NO2 ]2

for expt 1

Page 56: Chapter 13 Outline

a) 1 b) 0 c) 2 d) 3 e) 4

What is the order of the reaction with respect to OH–? 2 ClO2 (aq) + 2 OH– (aq) → ClO3

– (aq) + ClO2– (aq) + H2O (l)

[ClO2] [OH–] Initial Rate (M/s)

0.060 0.030 0.0248 0.020 0.030 0.00276 0.020 0.090 0.00828

Copyright © 2011 Pearson Education, Inc.

Page 57: Chapter 13 Outline

The  Effect  of  Temperature  on  Rate  •  changing  the  temperature  changes  the  rate  constant  of  the  rate  law  

•  Svante  Arrhenius  inves%gated  this  rela%onship  and  showed  that:  

57

R is the gas constant in energy units, _______________ where T is the temperature in _____

A is a factor called the frequency factor Ea is the _______________ , the extra energy needed to start the molecules reacting

Page 58: Chapter 13 Outline

58

Page 59: Chapter 13 Outline

The  Arrhenius  Equa%on:  The  Exponen%al  Factor  

•  the  exponen%al  factor  in  the  Arrhenius  equa%on  is  a  number  between  0  and  1  

•  it  represents  the  frac%on  of  reactant  molecules  with  sufficient  energy  so  they  can  make  it  over  the  energy  barrier  –  the  higher  the  energy  barrier  (larger  ac%va%on  energy),  the  fewer  

molecules  that  have  sufficient  energy  to  overcome  it  •  that  extra  energy  comes  from  conver%ng  the  kine%c  energy  of  

mo%on  to  poten%al  energy  in  the  molecule  when  the  molecules  collide    –  increasing  the  temperature  increases  the  average  kine%c  energy  of  the  

molecules  –  therefore,  increasing  the  temperature  will  increase  the  number  of  

molecules  with  sufficient  energy  to  overcome  the  energy  barrier  –  therefore  increasing  the  temperature  will  increase  the  reac%on  rate  

59

Page 60: Chapter 13 Outline

60

Page 61: Chapter 13 Outline

Arrhenius  Plots  •  the  Arrhenius  Equa%on  can  be  algebraically  solved  to  give  the  following  form:  

61

this equation is in the form y = mx + b where y = and x = a graph of ln(k) vs. (1/T) is a straight line

(-8.314 J/mol·K)(slope of the line) = Ea, (in Joules)

ey-intercept = A, (unit is the same as k)

Page 62: Chapter 13 Outline

Ex.  13.7    Determine  the  ac%va%on  energy  and  frequency  factor  for  the  reac%on  O3(g)  →  O2(g)  +  O(g)  given  the  following  data:    

62

Temp, K k, M-1·s-1 Temp, K k, M-1·s-1 600 3.37 x 103 1300 7.83 x 107 700 4.83 x 104 1400 1.45 x 108

800 3.58 x 105 1500 2.46 x 108

900 1.70 x 106 1600 3.93 x 108

1000 5.90 x 106 1700 5.93 x 108

1100 1.63 x 107 1800 8.55 x 108

1200 3.81 x 107 1900 1.19 x 109

Page 63: Chapter 13 Outline

Ex.  13.7    Determine  the  ac%va%on  energy  and  frequency  factor  for  the  reac%on  O3(g)  →  O2(g)  +  O(g)  given  the  following  data:    

63

use a spreadsheet to graph ln(k) vs. (1/T)

Page 64: Chapter 13 Outline

Ex.  13.7    Determine  the  ac%va%on  energy  and  frequency  factor  for  the  reac%on  O3(g)  →  O2(g)  +  O(g)  given  the  following  data:    

64

Ea = m·(-R) solve for Ea

Ea =

Ea =

A = ey-intercept solve for A

A =A =

Page 65: Chapter 13 Outline

Arrhenius  Equa%on:  Two-­‐Point  Form  

•  if  you  only  have  two  (T,k)  data  points,  the  following  forms  of  the  Arrhenius  Equa%on  can  be  used:    

65

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

211

2T1

T1ln

RE

kk a

Page 66: Chapter 13 Outline

Ex.  13.8  –  The  reac%on  NO2(g)  +  CO(g)  →  CO2(g)  +  NO(g)  has  a  rate  constant  of  2.57  M-­‐1·s-­‐1  at  701  K  and  567  M-­‐1·s-­‐1  at  895  K.  Find  the  ac%va%on  energy  

in  kJ/mol    

most activation energies are tens to hundreds of kJ/mol – so the answer is reasonable

T1 = 701 K, k1 = 2.57 M-1·s-1, T2 = 895 K, k2 = 567 M-1·s-1

Ea, kJ/mol

Check:

Solution:

Concept Plan:

Relationships:

Given:

Find:

Ea T1, k1, T2, k2

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

211

2T1

T1ln

RE

kk a

Page 67: Chapter 13 Outline

The chirping of tree crickets has sometimes been used to predict temperatures. At 25.0 oC the rate was 179 chirps/min. At 21.7 oC it was 142 chirps/min. What is the Ea of the process?

a)  316 J b)  51,300 J c)  0.749 kJ d)  6.16 kJ

Copyright © 2011 Pearson Education, Inc.

Page 68: Chapter 13 Outline

Collision  Theory  of  Kine%cs  

•  for  most  reac%ons,  in  order  for  a  reac%on  to  take  place,  the  reac%ng  molecules  must  collide  into  each  other.  

•  once  molecules  collide  they  may  react  together  or  they  may  not,  depending  on  two  factors  -­‐  

1.  whether  the  collision  has  enough  energy  to  "_______________holding  reactant  molecules  together";  

2.  whether  the  reac%ng  molecules  collide  in  the  _______________for  new  bonds  to  form.  

68

Page 69: Chapter 13 Outline

Effec%ve  Collisions  •  ____________________:  collisions  in  which  these  two  condi%ons  are  met  

•  the  higher  the  frequency  of  effec%ve  collisions,  the  faster  the  reac%on  rate  

•  when  two  molecules  have  an  effec%ve  collision,  a  temporary,  high  energy  (unstable)  chemical  species  is  formed  -­‐  called  an  ac1vated  complex  or  _______________  

69

Page 70: Chapter 13 Outline

Effec%ve  Collisions  Orienta%on  Effect  

70

Page 71: Chapter 13 Outline

Collision  Theory  and  the  Arrhenius  Equa%on  

•  A  is  the  factor  called  the  frequency  factor  and  is  the  number  of  molecules  that  can  approach  overcoming  the  energy  barrier  

•  there  are  two  factors  that  make  up  the  frequency  factor    – __________  factor  (p)    – ____________________factor  (z)    

71

!

k = A e"EaRT

#

$ %

&

' ( = pze

"EaRT

Page 72: Chapter 13 Outline

Orienta%on  Factor  •  the  proper  orienta%on  results  when  the  atoms  are  aligned  in  such  a  way  that  the  old  bonds  can  break  and  the  new  bonds  can  form    

•  the  more  complex  the  reactant  molecules,  the  less  frequently  they  will  collide  with  the  proper  orienta%on  –  reac%ons  between  atoms  generally  have  p  =  1  

•  for  most  reac%ons,  the  orienta%on  factor  is  less  than  1  –  for  many,  p  <<  1  

72

Page 73: Chapter 13 Outline

Reac%on  Mechanisms  •  we  generally  describe  chemical  reac%ons  with  an  equa%on  lis%ng  all  the  reactant  molecules  and  product  molecules  

•  but  the  probability  of  more  than  3  molecules  colliding  at  the  same  instant  with  the  proper  orienta%on  and  sufficient  energy  to  overcome  the  energy  barrier  is  negligible  

•  most  reac%ons  occur  in  a  series  of  small  reac%ons  involving  1,  2,  or  at  most  3  molecules  

•  describing  the  series  of  steps  that  occur  to  produce  the  overall  observed  reac%on  is  called  a  __________  __________  

•  knowing  the  rate  law  of  the  reac%on  helps  us  understand  the  sequence  of  steps  in  the  mechanism  

73

Page 74: Chapter 13 Outline

An  Example  of  a  Reac%on  Mechanism  •  Overall  reac%on:  

H2(g)  +  2  ICl(g)  →  2  HCl(g)  +  I2(g)    •  Mechanism:  

1)  H2(g)  +  ICl(g)  →  HCl(g)  +  HI(g)    2)  HI(g)  +  ICl(g)  →  HCl(g)    +  I2(g)    

•  the  steps  in  this  mechanism  are  __________  _____,  meaning  that  they  cannot  be  broken  down  into  simpler  steps  and  that  the  molecules  actually  interact  directly  in  this  manner  without  any  other  steps  

74

Page 75: Chapter 13 Outline

Elements  of  a  Mechanism  Intermediates  

•  no%ce  that  the  HI  is  a  product  in  Step  1,  but  then  a  reactant  in  Step  2  

•  since  HI  is  made  but  then  consumed,  HI  does  not  show  up  in  the  overall  reac%on  

•  materials  that  are  products  in  an  early  step,  but  then  a  reactant  in  a  later  step  are  called  ______________  

75

H2(g) + 2 ICl(g) → 2 HCl(g) + I2(g) 1)  H2(g) + ICl(g) → HCl(g) + HI(g) 2)  HI(g) + ICl(g) → HCl(g) + I2(g)

Page 76: Chapter 13 Outline

Molecularity  

•  the  number  of  reactant  par%cles  in  an  elementary  step  is  called  its  _______________  

•  unimolecular  step:  involves  __  reactant  par%cle  •  bimolecular  step:  involves  __  reactant  par%cles  

–  though  they  may  be  the  same  kind  of  par%cle  

•  termolecular  step:  involves  __  reactant  par%cles  –  though  these  are  exceedingly  rare  in  elementary  steps  

76

Page 77: Chapter 13 Outline

Rate  Laws  for  Elementary  Steps  •  each  step  in  the  mechanism  is  like  its  own  lirle  reac%on  –  with  its  own  ac%va%on  energy  and  own  rate  law  

•  the  rate  law  for  an  overall  reac%on  must  be  determined  experimentally  

•  but  the  rate  law  of  an  elementary  step  can  be  deduced  from  the  equa%on  of  the  step  

77

H2(g) + 2 ICl(g) → 2 HCl(g) + I2(g) 1)  H2(g) + ICl(g) → HCl(g) + HI(g) Rate = k1[H2][ICl] 2)  HI(g) + ICl(g) → HCl(g) + I2(g) Rate = k2[HI][ICl]

Page 78: Chapter 13 Outline

Rate  Determining  Step  •  in  most  mechanisms,  one  step  occurs  slower  than  the  other  steps  

•  the  result  is  that  product  produc%on  cannot  occur  any  faster  than  the  _______________  –  the  step  determines  the  rate  of  the  overall  reac%on  

•  we  call  the  slowest  step  in  the  mechanism  the  _____  _______________step  –  the  slowest  step  has  the  largest  ac%va%on  energy  

•  the  rate  law  of  the  rate  determining  step  determines  the  rate  law  of  the  overall  reac%on  

78

Page 79: Chapter 13 Outline

Another  Reac%on  Mechanism  

79

NO2(g) + CO(g) → NO(g) + CO2(g) Rateobs = 1)  NO2(g) + NO2(g) → NO3(g) + NO(g) Rate = .

2)  2) NO3(g) + CO(g) → NO2(g) + CO2(g) Rate = .

The first step in this mechanism is the rate determining step.

The first step is slower than the second step because its activation energy is larger.

The rate law of the first step is the same as the rate law of the overall reaction.

Page 80: Chapter 13 Outline

Valida%ng  a  Mechanism  

•  in  order  to  validate  (not  prove)  a  mechanism,  two  condi%ons  must  be  met:  

1.  the  elementary  steps  must  _____  to  the  overall  reac%on  

2.  the  rate  law  predicted  by  the  __________  must  be  consistent  with  the  experimentally  observed  __________  

80

Page 81: Chapter 13 Outline

Catalysts  •  catalysts  are  substances  that  affect  the  rate  of  a  reac%on  without  being  consumed  

•  catalysts  work  by  providing  an  _________________  for  the  reac%on  –  with  a  ____________________  

•  catalysts  are  consumed  in  an  early  mechanism  step,  then  made  in  a  later  step  

81

mechanism without catalyst

O3(g) + O(g) → 2 O2(g) V. Slow

mechanism with catalyst

Cl(g) + O3(g) ⇔ O2(g) + ClO(g) Fast ClO(g) + O(g) → O2(g) + Cl(g) Slow

Page 82: Chapter 13 Outline

Catalysts  •  ____________________  catalysts  are  in  the  same  phase  as  the  reactant  par%cles  – Cl(g)  in  the  destruc%on  of  O3(g)  

•  ____________________  catalysts  are  in  a  different  phase  than  the  reactant  par%cles  – solid  cataly%c  converter  in  a  car’s  exhaust  system  

82

Page 83: Chapter 13 Outline

Types  of  Catalysts  

83