29
Intelligent Robot Lab Pusan National University Intelligent Robot Lab Chapter 12. DESIGN VIA STATE SPACE Intelligent Robot Laboratory

Chapter 12. Intelligent Robot Lab DESIGN VIA STATE SPACEelearning.kocw.net/KOCW/document/2016/pusan/leejangmyung/5.pdf · Intelligent Robot Lab Intelligent Robot Lab. vTopology for

  • Upload
    others

  • View
    31

  • Download
    0

Embed Size (px)

Citation preview

  • Intelligent Robot Lab

    Pusan National UniversityIntelligent Robot Lab

    Chapter 12.DESIGN VIA STATE SPACE

    Intelligent Robot Laboratory

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Introduction

    v Controller Design

    v Controllability

    v Alternative Approaches to Controller Design

    v Observer Design

    v Observability

    v Alternative Approaches to Observer Design

    v Steady-State Error Design via Integral Control

    Table of Contents

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Frequency domain methods§ Create a compensator in cascade or in the feedback path§ Drawbacks

    • Designing the dominant second-order pair of poles• Gain adjustment is not sufficient to place all the closed-loop poles properly.

    v State-space methods

    § State-space methods are used to handle other adjustable parameters.• Properly place all poles of the closed-loop system

    § Drawbacks• Do not allow the specification of closed-loop zero locations• Very sensitive to parameter changes

    Introduction

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Additional parameters control the location of all closed-loop poles

    v An nth-order closed-loop characteristic equation (closed-loop pole locations):

    v n adjustable parameters ( n coefficients ) all of the poles of the closed-loop system can be set to any desired location.§ Coefficient of the highest power of s is unity

    Controller design

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.1)

    ®

    ®

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v An nth-order closed-loop characteristic equation

    v n adjustable parameters (n coefficients)§ Coefficient of the highest power is unity.§ n coefficients whose values determine the system’s closed-loop pole locations.§ n adjustable parameters into the system

    Controller design

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.1)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Topology for pole placement§ State-space representation of a plant

    § Plant with state-feedback

    Controller design

    = + =

    uyx Ax B

    Cx& (12.2a)

    (12.2b)

    = + = (- ) = ( - )

    =

    urr

    y

    + ++

    x Ax BAx B Kx A BK x B

    Cx

    & (12.3a)

    (12.3b)Figure 12.2

    a. State-space representation of plantb. plant with state-variable feedback

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    Controller design

    a. Phase-variable representation for plant b. plant with state-variable feedback

    Figure 12.3

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Pole placement for plants in phase-variable form1. Represent the plant in phase-variable form

    2. Feedback each phase variable to the input of the plant through a

    gain,

    3. Find the characteristic Eq. for the closed-loop system in step 2

    4. Decide upon all closed-loop pole locations and determine an equivalent

    characteristic equations.

    5. Solve for from the characteristic equations form steps 3 and 4.

    Controller design

    ik

    ik

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Phase-variable form - Eq.(12.2)

    § The characteristic equation is:

    Controller design

    0 1 2 1

    0 1 0 0 00 0

    = ; = ;

    1na a a a -

    é ù é ùê ú ê úê ú ê úê ú ê úê ú ê ú- - - - ë ûë û

    A B

    LM M M LM M M M M M

    L

    [ ]1 2 = nc c cC L

    (12.4)

    11 1 0 0

    n nns a s a s a

    --+ + + + =L (12.5)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Feedback each state variable to u for a closed-loop system:

    § The characteristic equation of the closed-loop system can be written:

    § The desired characteristic equation:

    § From (12.9) and (12.10):

    Controller design

    1 2

    0 1 1 2 2 3 1

    = x = ( )

    0 1 0 00 0 1 0

    =

    ( ) ( ) ( ) ( )

    n

    n n

    uk k k

    a k a k a k a k-

    -

    æ öç ÷ç ÷-ç ÷ç ÷- + - + - + - +è ø

    KK

    A BK

    LLL

    M M M M ML

    (12.8)

    (12.9)

    (12.6)

    (12.7)

    11 1 2 0 1det( ( )) ( ) ( ) ( ) 0

    n nn ns s a k s a k s a k

    --- - = + + + + + + + =I A BK L

    Phase-variable form

    The ’s are the phase variables’ feedback gainsik

    11 1 0 0

    n nns d s d s d

    --+ + + + =L (12.10)

    1

    1 for 0,1, 2, , 1i i ii i i

    d a k i nk d a+

    = + + = -

    = -

    K (12.11)(12.12)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example 12.1: Controller design for phase-variable form§ Design the phase-variable feedback gains

    • To yield 9.5 % overshoot• To yield 0.74 second settling time

    § Closed-loop poles are : § Choose the third closed-loop pole to cancel the closed loop zero: -5.1

    §

    Controller design

    20( 5)( )( 1)( 4)

    sG ss s s

    +=

    + +

    3 2

    20 100( )5 4sG s

    s s s+

    =+ +

    5.4 7.2j- ±

    (a) Phase-variable representation (b) Plant with state-variable feedbackFigure 12.3

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The desired characteristic equation based on the selected poles:

    § The zero term of the closed-loop transfer function is the same as the zero term of the open-loop system: (s+5)

    Controller design

    ( )1 2 3

    0 1 0 00 0 1 0

    (4 ) (5 ) 1

    100 20 0

    rk k k

    y

    æ ö æ öç ÷ ç ÷= +ç ÷ ç ÷ç ÷ ç ÷- - + - +è ø è ø

    =

    x x

    x

    &

    3 23 2 1det( ( )) (5 ) (4 ) 0s s k s k s k- - = + + + + + =I A BK

    3 25.4 7.2, 5.1 s 15.9 136.08 413.1 0j s s- ± - ® + + + =

    1

    2

    3

    413.1132.0810.9

    kkk

    ===

    ( )

    3 2

    0 1 0 00 0 1 0

    413.1 136.08 15.9 1

    100 20 020( 5)( )

    15.9 136.08 413.1

    r

    ysT s

    s s s

    æ ö æ öç ÷ ç ÷= +ç ÷ ç ÷ç ÷ ç ÷- - -è ø è ø

    =

    +=

    + + +

    x x

    x

    &

    Figure 12.5 Simulation of closed-loop system

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § To control the pole location of the closed-loop system u can control each state variable.

    § If an input to a system can be found that takes every state variable from a desired initial stateto a desired final state the system is said to be controllable; otherwise, the system is uncontrollable.

    § Pole placement only for controllable systems

    Controllability

    ®

    ®

    ®

    Figure 12.6(a)Controllable (b)Uncontrollable

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Controllability by inspection

    Controllability

    1

    2

    3

    1 1 1

    2 2 2

    3 3 3

    0 0 10 1 10 0 1

    aa r

    ax a x ux a x ux a x u

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø= - += - += - +

    x x&

    &&&

    4

    5

    6

    1 4 1

    2 5 2

    3 6 3

    0 0 00 1 10 0 1

    aa r

    ax a xx a x ux a x u

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø= -= - += - +

    x x&

    &&&

    (12.21)

    (12.22)

    (12.23)

    (12.24)

    Figure 12.6(a)Controllable (b)Uncontrollable

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Controllability matrix

    § An n-the-order plant whose state equation is

    is completely controllable if the matrix

    is of rank n (full rank), where is called the controllability matrix.

    Controllability

    MC

    = +x Ax Bu&

    é ù= ë û2 n-1

    MC B AB A B A BL

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example 12.2: Controllability via controllability matrix§ From the signal-flow diagram, determine its controllability.

    Controllability

    1 1 0 0 0 1 0 1

    0 0 2 1

    u

    u

    = +

    -æ ö æ öç ÷ ç ÷= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è ø

    x Ax B

    x

    det( ) 1= -MC

    Figure 12.7( )2

    0 1 2 1 1 4

    1 2 1

    =

    -æ öç ÷= -ç ÷ç ÷-è ø

    mC B AB A B

    The determinant is not zerononsingular has a full rank matrix.the system is controllable.the poles of the system can be placed using state-variable feedback design.

    ®®®

    MC

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v The first method§ Controller design by matching coefficients§ This technique, in general, leads to difficult calculations of the feedback gains,

    especially for higher-order systems not represented with phase variable form.

    v Example : 12.3

    §

    § Design state feedback for the plant in cascade formYielding 15% overshoot & 0.5 sec settling time

    Alternative approaches to controller design

    ( ) 10( ) ( 1)( 2)

    Y sG s s s

    =+ +

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § State equations from Figure 12.8(b)

    § where the characteristic equation is

    § We obtain the desired characteristic equation

    § Equating the middle coefficients of Eqs. (12.32) and (12.33),

    Alternative approaches to controller design

    [ ]1 2

    2 1 0( 1) 1

    10 0

    rk k

    y

    -é ù é ù= +ê ú ê ú- - + ë ûë û=

    x x

    x

    &

    Figure 12.8(a)Signal-flow graph in cascade form(b)System with state feedback added

    22 2 1( 3) (2 2) 0s k s k k+ + + + + =

    2 16 239.5 0s s+ + =

    1 2211.5 , 13k k= =

    (12.31a)

    (12.31b)

    (12.32)

    (12.33)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v The second method§ The second method consists of transforming the system to phase variable

    form, designing the feedback gains, and transforming the designed system back to original state variable representation.

    § Assume a plant not represented in a phase-variable form,

    § Assume that the system can be transformed into phase-variable (x) representation:

    Alternative approaches to controller design

    +y==

    z Az BuCz

    & 2 1 n-é ù® = ë ûMzC B AB A B A BL

    1 1+ uy

    - -==

    x P APx P BCPx

    & = ®z Px

    (12.35)

    (12.37a)

    (12.37b)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Controllability matrix is

    § Substituting Eq. (12.35) into (12.38) and solving for P, we obtain

    § Thus, the transformation matrix, P, can be found from the two controllability matrices.

    Alternative approaches to controller design

    1 1 1 1 2 1 1 1 1

    1 1 1 1 1 1 1

    1 1 1 1

    1 2 1

    ( )( ) ( ) ( ) ( ) ( )

    ( )( ) ( )( )( ) ( )

    ( )( ) ( )( )

    n

    n

    - - - - - - - -

    - - - - - - -

    - - - -

    - -

    é ù= ë ûé= ë

    ùûé ù= ë û

    MxC P B P AP P B P AP P B P AP P B

    P B P AP P B P AP P AP P B P AP

    P AP P AP P AP P B

    P B AB A B A B

    L

    L

    L

    L

    (12.38)

    1-= Mz MxP C C (12.39)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Input,

    § Using,

    § Comparing Eq.(12.41) with(12.3), the state variable feedback gain, Kz, for the original system is

    Alternative approaches to controller design

    xK xu r= - + (12.38)

    1x P z-=

    (12.41a)

    1 1 1

    1 1 1 ( )rr

    y

    - - -

    - - -

    = - +

    = -=

    X

    X

    x P APx P BK x P BP AP P BK x + P B

    CPx

    &(12.40a)

    (12.40b)

    1 1( )r ry

    - -= - + = - +=

    X Xz Az BK P z B A BK P z BCz

    &(12.41b)

    1-=Z XK K P (12.42)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    v Example: 12.4 Controller design by transformation

    §

    § Design a state-variable feedback controllerYielding 20.8% overshoot & 4 sec settling time

    Alternative approaches to controller design

    ( 4)( )( 1)( 2)( 5)

    sG ss s s

    +=

    + + +

    Figure 12.9 Signal-flow graph for plant of Example 12.4

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The state equations,

    § Since the determinant of is -1, the system is controllable.§ Convert the system to phase variables

    Alternative approaches to controller design

    [ ]

    5 1 0 00 2 1 00 0 1 1

    4 1 0

    u u

    y

    -é ù é ùê ú ê ú= + = - +ê ú ê úê ú ê ú-ë û ë û

    = =

    Z Z

    Z

    z A z B z

    C z z

    &(12.44)

    2

    0 0 10 1 31 1 1

    é ùê úé ù= = -ë û ê úê ú-ë û

    Mz Z Z Z Z ZC B A B A B (12.45)

    MzC

    3 2det( ) 8 17 10 0s s s s- = + + + =ZI A (12.46)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using the coefficients of Eq. (12.46)

    § Controllability matrix is,

    Alternative approaches to controller design

    [ ]

    0 1 0 00 0 1 010 17 8 1

    4 1 0

    u u

    y

    é ù é ùê ú ê ú= + = +ê ú ê úê ú ê ú- - -ë û ë û

    =

    X Xx A x B x

    x

    & (12.47a)

    2

    0 0 10 1 81 8 47

    é ùê úé ù= = -ë û ê úê ú-ë û

    Mz X X X X XC B A B A B (12.48)

    (12.47b)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using Eq. (12.39)

    § Design the controller using the phase-variable representation and the use P to

    transfer the design back to the original representation.

    20.8% overshoot and a settling time of 4 seconds a factor of characteristic

    equation of the designed closed-loop system:

    § And choose the third closed-loop pole at s = - 4 to cancel the closed-loop zero

    Alternative approaches to controller design

    (12.49)1

    1 0 05 1 0

    10 7 1

    -

    é ùê ú= = ê úê úë û

    Mz MxP C C

    ®

    2( 2 5)s s+ +

    2 3 2 ( ) ( 4)( 2 5) 6 13 20 0D s s s s s s s® = + + + = + + + = (12.50)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § The state equations for the phase-variable form with state-variable feedback:

    § The characteristic equation for Eq. (12.51) is,

    § Comparing Eq. (12.50) with (12.52),

    Alternative approaches to controller design

    [ ]1 2 3

    0 1 0( ) 0 0 1

    (10 ) (17 ) (8 )

    4 1 0x x x

    k k k

    y

    é ùê ú= + = ê úê ú- + - + - +ë û

    =

    X X Xx A B K x x

    x

    & (12.51a)

    3 23 2 1det( ( )) (8 ) (17 ) (10 ) 0x x xs s k s k s k- - = + + + + + + =X X XI A B K (12.52)

    (12.51b)

    [ ] [ ]1 2 3 10 4 2x x xk k k= = - -XK (12.53)

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Using Eqs. (12.42) and (12.49),

    Alternative approaches to controller design

    [ ]1 20 10 2-= = - -Z XK K P (12.54)

    Figure 12.10 Designed system with state-variable feedback for Example 12.4

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    § Verify the design

    § The closed-loop transfer function:

    Alternative approaches to controller design

    [ ]

    5 1 0 0( ) 0 2 1 0

    20 10 1 1

    1 1 0

    r r

    y

    -é ù é ùê ú ê ú= - + = - +ê ú ê úê ú ê ú-ë û ë û

    = = -

    Z Z Z Z

    Z

    z A B K z B z

    C z z

    & (12.55a)

    3 2 2

    ( 4) 1( )6 13 20 2 5

    sT ss s s s s

    += =

    + + + + +

    1( )( ) ( )( )

    Y sT s sU s

    -= = - +C I A B D (3.73)

    (12.56)

    (12.55b)

    Converting from State Spaceto a Transfer function

  • http://robotics.pusan.ac.kr

    Intelligent Robot Lab

    Intelligent Robot Lab.

    TTHHAANNKK UUYYOO