13
9/27/2016 Chapter 11. Differentiation and Determination http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 1/13 KAP Biology Dept Kenyon College Chapter 11. Development: Differentiation and Determination Differential gene expression and development Mechanisms of cellular determination Induction Pattern formation Differential gene expression and development The fate of a cell describes what it will become in the course of normal development. The fate of a particular cell can be discovered by labelling that cell and observing what structures it becomes a part of. When the fate of all cells of an embryo has been discovered, we can build a fate map, which is a diagram of that organism at an early stage of development that indicates the fate of each cell or region at a later stage of development. The developmental potential, or potency, of a cell describes the range of different cell types it CAN become. The zygote and its very early descendents are totipotent these cells have the potential to develop into a complete organism. Totipotency is common in plants, but is uncommon in animals after the 24 cell stage. As development proceeds, the developmental potential of individual cells decreases until their fate is determined. The determination of different cell types (cell fates) involves progressive restrictions in their developmental potentials. When a cell “chooses” a particular fate, it is said to be determined, although it still "looks" just like its undetermined neighbors. Determination implies a stable change the fate of determined cells does not change. Differentiation follows determination, as the cell elaborates a cellspecific developmental program. Differentiation results in the presence of cell types that have clearcut identities, such as muscle cells, nerve cells, and skin cells.

Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination 1/13 KAP Biology Dept

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 1/13

 KAP Biology Dept Kenyon College

Chapter 11.  Development:Differentiation and Determination

Differential gene expression and development Mechanisms of cellular determination Induction Pattern formation

Differential gene expression and developmentThe fate of a cell describes what it will become in the course of normal development. The fate of aparticular cell can be discovered by labelling that cell and observing what structures it becomes a part of.When the fate of all cells of an embryo has been discovered, we can build a fate map, which is a diagramof that organism at an early stage of development that indicates the fate of each cell or region at a laterstage of development.

The developmental potential, or potency, of a cell describes the range of different cell types it CANbecome. The zygote and its very early descendents are totipotent ­ these cells have the potential to developinto a complete organism. Totipotency is common in plants, but is uncommon in animals after the 2­4 cellstage. As development proceeds, the developmental potential of individual cells decreases until their fateis determined.

The determination of different cell types (cell fates) involves progressive restrictions in theirdevelopmental potentials. When a cell “chooses” a particular fate, it is said to be determined, although itstill "looks" just like its undetermined neighbors. Determination implies a stable change ­ the fate ofdetermined cells does not change.

Differentiation follows determination, as the cell elaborates a cell­specific developmental program.Differentiation results in the presence of cell types that have clear­cut identities, such as muscle cells,nerve cells, and skin cells.     

Page 2: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 2/13

Differentiation results from differential gene expression: The specific components ofa given cell provides its special characteristics. These components are either synthesized by proteins, orare themselves proteins. By expressing different subsets of genes, two cells contain different subsets ofgene products (proteins).     

Page 3: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 3/13

How can we observe that cells from two tissues express different genes? Below are two blots: theSouthern blot shows that tissues A and B both contain a particular gene. However, the Northern blotsshows that only tissue A contains RNA transcribed from that particular gene.

Page 4: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 4/13

Differential gene  expression is not a result of differential loss of thegenetic material, DNA, except in the case of the immune system. That is, geneticinformation is not lost as cells become determined and begin to differentiate.

 

In fact, eventhe nuclei ofadult cellscontainALL of theinformationneeded fortheconstructionof an entireorganism, ifprovided with the

Page 5: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 5/13

propercytoplasmiccomponents. Thecloning of Dollyfrom an adult cellis a majorbreakthrough, notonly because ofpotentialbiotechnologicalapplications, butbecause of theimportance ofthis result forbasic science: theresult is the mostconvincingevidence for thetheory ofdifferential geneexpression.

In order to clone Dolly, udder cells were removed from a Finn Dorset ewe and starved for one week tocause G0 arrest.  Nuclei from arrested Finn Dorset udder cells were fused with enucleated eggs from aScottish Blackface ewe, and then stimulated to re­enter the cell cycle. After a few rounds of cell division,the embryo was transplanted into a surrogate Scottish Blackface mother. The sheep that was born wasgenetically identical to the Finn Dorset ewe, which was the source of the nucleus.

Page 6: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 6/13

Transplantation of imaginal discs in insects and the cloning of whole plants from individual cellsstrengthens the conclusion that genetic information is not lost as cells become determined and begin todifferentiate.

While differentiation results in specific cell types, morphogenesis is the process whereby the shape(morph) of the embryo is generated (genesis). Morphogenesis in both plants & animals involves regulatedpatterns of cell division and cell elongation that leads to changes in cell shape. Cell movement also plays acritical important role in animal morphogenesis.

Mechanisms of cellular determinationHow do cells become different from their parent cells? How do two identical daughter cells becomedifferent from one another? How might one daughter cell become a neuron, while the other daughter cellbecomes a skin cell? In some cases, determination results from the asymmetric segregation of cellulardeterminants. However, in most cases, determination is the result of inductive signaling between cells.    

 

Page 7: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 7/13

Asymmetric segregation ofcellular determinants is based on theasymmetric localization of cytoplasmicmolecules (usually proteins or mRNAs)within a cell before it divides. During celldivision, one daughter cell receives most orall of the localized molecules, while the otherdaughter cell receives less (or none) of thesemolecules. This results in two differentdaughter cells, which then take on differentcell fates based on differences in geneexpression. The localized cytoplasmicdeterminants are often mRNAs encodingtranscription factors, or the transcriptionfactors themselves. Unequal segregation ofcellular determinants is observed duringearly development of the C. elegans (seeimage below) and Drosophila embryos. 

  

P­granule segregation during the earlyembryonic divisions of the nematodeCaenorhabditis elegans:The image on the right shows an example of asymmetricsegregation of cellular determinants in the early C. elegansembryo. All of the cells in the embryo are visible on the leftside of the image, while only the P granules are visible on theright side of the image. The P granules were fluorescentlylabelled ­ they are the green "dots".

a)  A newly fertilized embryo with dispersed P granules. 

Page 8: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 8/13

b)  P granules are localized to the posterior end of the zygote. 

c)  After the first division, P granules are present only in thesmaller, posterior cell. 

d)  Another unequal division gives rise to a single cellcontaining P granules. 

e)  When the larva hatches, P granules are localized to theprimordial germ cells. 

WATCH MOVIESof P granule movement from SusanStrome's lab!!!

 from Susan Strome's lab

Movie of assymetric cell segregation

Although there are many examples where the asymmetric segregation of cellular determinants leads todifferences between daughter cells, more frequently we find that cells become different from one anotheras a result of inductive signals coming either from other cells or from their external environment.  

 

There are many examplesin development where aninductive signalfrom one group of cellsinfluences thedevelopment of anothergroup of cells. 

There are three main waysin which signals can bepassed between cells. 

In the first mechanism, adiffusible signal issent through theextracellular space, and isreceived by a cell­surfacereceptor, which further

Page 9: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 9/13

transmits the signals byway of second messengers.

In the second mechanism,cells directly contacteach other throughtransmembrane proteinslocated on their surfaces. 

In the third mechanism,the cytoplasm of two cellsis connected through gapjunctions,allowing thethe signal to pass directlyfrom one cell to anothercell. In plants, directconnections between cellsare calledplasmodesmata.

Although one of the classic models for signaling involves diffusion, there is new evidence that inductivesignals may in fact be actively transported within and between cells, and that cellular projections may beinvolved in long distance communication between cells.

Pattern formationHow do organs develop in their proper positions? How do cells "know" where they are within adeveloping organism? Pattern formation concerns the processes by which cells acquire positionalinformation.

There are two general models for how patterns form: use of a morphogen gradient, and sequentialinduction.

Page 10: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 10/13

The morphogen gradientmodel involves the production and release of a diffusible chemicalsignal called a morphogen. Morphogen release creates a concentration gradient, with high concentrationsof morphogen close to the source, and low concentrations farther away from the source. Exposure todifferent threshold levels of morphogen leads to different cell fates. In the example below, very highconcentrations of the morphogen (above threshold 3) lead to the blue fate, medium levels of morphogen(betweens thresholds 2 and 3) lead to the red fate, and low levels of morphogen (between thresholds 1and 2) lead to the purple fate. In this way, different amounts of one chemical signal can create a complexpattern.

What is an example of the use of a gradient in pattern formation??The very first step in patterning the embryo of the fruit fly, Drosophila melanogaster, is a good exampleof pattern formation by a gradient. We'll talk more about Drosophila development next week. But for now,let's just use it as an example of this important concept.

Bicoid is a transcription factor which turns on different genes in different levels ­ acting as a morphogengradient. In this way, the four genes shown in part A (tailless, empty spiracles, hunchback, andkruppel) are found in different locations within the Drosophila embryo, as a result of the amount ofBicoid protein at a particular location in the embryo.

After fertilization, bicoid mRNA from the mother fly begins to be translated into Bicoid protein in theDrosophila zygote. The computer­generated image B shows how the Bicoid protein diffuses through the

Page 11: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 11/13

egg forming a gradient. High concentrations of Bicoid protein are shown in white on the left (anterior) endof the zygote, and low concentrations are shown in blue on the right (posterior) end.

Image C shows Bicoid protein in the nuclei of a Drosophila embryo after a number of rounds of mitosis.Notice that the nuclei in the anterior end (left) have more Bicoid protein than those in the posterior end(right) .

Image D shows  Kruppel protein in orange and  Hunchback protein in green. The region where thetwo proteins overlap is yellow. The colors come from fluorescent dyes attached to antibodies that bindspecifically to these proteins.

images B and D from Robert J. Huskey image C from the Genetic Networks Database

The sequential inductionmodel involves the production and release of a series of chemicalsignals. Signal 1 leads to the blue fate and production of signal 2. Signal 2 is received by neighbor cells,and leads to the red fate and production of signal 3. Signal 3 is then received by neighbor cells, and leadsto the purple fate. In contrast to the morphogen gradient model, multiple chemical signals are required tocreate the pattern.

Page 12: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 12/13

What is an example of the use of sequential induction in patternformation??The development of the vulva (a ventral opening used for copulation and egg­laying) in the soil nematode,Caenorhabditis elegans, is a good example of pattern formation by sequential induction.

 

from Andreas Eizinger and Ralf J. Sommer, Science 278:452­455 (1997)

This diagram of a larval nematode shows the location ofcells which will become the vulva.

Page 13: Chapter 11. Development: Differentiation and Determination ...€¦ · 9/27/2016 Chapter 11. Differentiation and Determination  1/13 KAP Biology Dept

9/27/2016 Chapter 11. Differentiation and Determination

http://biology.kenyon.edu/courses/biol114/Chap11/Chapter_11.html 13/13

Vulval precursor cells P1.p through P12.p are identical toone another before the vulva develops. Vulval patternformation requires the production of an initial signal (openarrow) by the anchor cell (AC). This signal is received bythe vulval precursor cell called P6.p. The signal from ACchanges P6.p in a way that alters signaling (by a secondsignal) between P5.p, P6.p and P7.p (filled arrows). As aresult, vulval precursor cells P5.p and P7.p attain a highlevel of the protein LIN­12 (gray shading), but P6.p doesnot. That is, the combination of both signals makes P5.pand P7.p DIFFERENT FROM P6.p, and also different fromtheir neighbors (shown in the top figure).

from Iva Greenwald

Thanks to David Marcey for construction of some of the images shown above.  

Top