38
Chapter 11 The Periodic Table

Chapter 11

  • Upload
    kyne

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Chapter 11 . The Periodic Table. I. History of the Periodic Table. Johann Wolfgang Döbereiner and triads John Newlands and the Law of Octaves Dmitri Mendeleev and the 1 st periodic table. Mendeleev’s Periodic Table. Mendeleev’s Predictions. Periodic Law. - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 11

Chapter 11

The Periodic Table

Page 2: Chapter 11

I. History of the Periodic Table

• Johann Wolfgang Döbereiner and triads• John Newlands and the Law of Octaves• Dmitri Mendeleev and the 1st periodic table

Page 3: Chapter 11

Mendeleev’s Periodic Table

Page 4: Chapter 11

Mendeleev’s Predictions

Predicted properties for Mendeleev’s Eka-Silicon and properties of Germanium:

Element Atomic Weight Density  Oxide formula Chloride formula  

Eka-Silicon (predicted 1871)

72  5.5 g/cm3 EsO2 EsCl4  

Germanium(discovered 1886)

72.59 5.32 g/cm3 GeO2 GeCl4  

Page 5: Chapter 11

Periodic Law

• Basis: Element arranged according to their atomic masses present a clear periodicity of properties

• Modern: The properties of elements repeat periodically when the elements are arranged in increasing order by their atomic numbers

Page 6: Chapter 11

Circular Periodic Table

Page 7: Chapter 11

Benfey’s Periodic Table

Page 8: Chapter 11

Physics Periodic Table

Page 9: Chapter 11

ADOMAH periodic table - electron orbitals

Page 10: Chapter 11

Spiral Periodic Table

Page 11: Chapter 11

We like spirals!

Page 12: Chapter 11

Periodic system Pyramid format

Page 13: Chapter 11

Periodic system: Zmaczynski & Bayley

Page 14: Chapter 11

Periodic table in binary electron shells layout, designed by Eric

William McPherson

Page 15: Chapter 11

Regions of the Periodic table

Page 16: Chapter 11

Representative Elements -EC

• Valence v. core electrons

Page 17: Chapter 11

Representative Elements - Ions

• Generalization of atom/ion stability– Usually means 8 valence = octet rule

Page 18: Chapter 11

Transition Elements - EC

• Remember the exceptions to filling d orbitals

Page 19: Chapter 11

Periodic Trends – Atomic Radii

• Worksheet: Atomic Size• Why does atomic radius decrease across a period?– Higher # = more protons = higher core charge

• Increased attraction between p+ & e-– e- pulled closer to nucleus = ????

• Why does atomic radius increase down a group?– Valence electron shell higher n = higher probability

of finding e- further from nucleus = ????– Shielding by core e- = less pull on valence e- = ????

Smaller radius

Larger radius

Larger radius

Page 20: Chapter 11

Atomic Radii

Page 21: Chapter 11

Periodic Trends – Ionic Radii

• Cation (+) radii are smaller than atomic radii– Why?• Lose of valence e- • Results in lower n, resulting in stronger nuclear pull

• Anion (-) radii are larger than atomic radii– Why?• Gain of e-• Results in increased repulsion between e-

Page 22: Chapter 11

Sizes of Anions (- ions)

Page 23: Chapter 11

Sizes of Cations (+ ions)

Page 24: Chapter 11

Graph of Atomic Radii

Page 25: Chapter 11

Definition of Ionization Energy (IE)

• Ionization energy is the energy required to remove an electron from a gaseous atom or ion. The first or initial ionization energy or Ei of an atom or molecule is the energy required to remove one mole of electrons from one mole of isolated gaseous atoms or ions. You may think of ionization energy as a measure of the difficulty of removing electron or the strength by which an electron is bound. The higher the ionization energy, the more difficult it is to remove an electron. Therefore, ionization energy is an indicator of reactivity.

Page 26: Chapter 11

Periodic trends – 1st Ionization Energy

exceptions

Page 27: Chapter 11
Page 28: Chapter 11

Periodic Trends – 2nd Ionization Energy

  1 2 3 4 5 6 7 8H 1312              He 2372 5250            Li 520 7297 11810          Be 899 1757 14845 21000        B 800 2426 3659 25020 32820      C 1086 2352 4619 6221 37820 47260    N 1402 2855 4576 7473 9442 53250 64340  O 1314 3388 5296 7467 10987 13320 71320 84070F 1680 3375 6045 8408 11020 15160 17860 92010Ne 2080 3963 6130 9361 12180 15240    Na 496 4563 6913 9541 13350 16600 20113 25666Mg 737 1450 7731 10545 13627 17995 21700 25662

*The teal colored cells represent ionization energies where the valence shell is now (n-1). (Why do you think there is such a large jump in the ionization energies when the n-1 shell is now valence?)

Page 29: Chapter 11

Periodic Trends - Electronegativity

• Definition• Increases across a period (L to R), decreases down a

group (top to bottom)

Page 30: Chapter 11

Electronegativity

• Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons.

• The Pauling scale is the most commonly used. Fluorine (the most electronegative element) is assigned a value of 4.0, and values range down to Cesium and Francium which are the least electronegative at 0.7.

Page 31: Chapter 11
Page 32: Chapter 11
Page 33: Chapter 11

Electron Affinity!

Page 34: Chapter 11

Electron Affinity Definition

• the quantitative measure, usually given in electron-volts (eV), of the tendency of an atom or molecule to capture an electron and to form a negative ion.

Page 35: Chapter 11
Page 36: Chapter 11

Periodic Trend for electron affinity

Page 37: Chapter 11

Periodic Trends - All

*Note: The electron affinity of an element is the energy given off when a neutral atom in the gas phase gains an extra electron to form a negatively charged ion

Page 38: Chapter 11

Wrap-up

• Periodic Table Activity