148
1. MEYERHOF METHOD POINT BEARING CAPACITY, Q P

CHAP 3 Deep Foundation Azizi 2012.ppt

Embed Size (px)

Citation preview

Page 1: CHAP 3 Deep Foundation Azizi 2012.ppt

1. MEYERHOF METHOD

POINT BEARING CAPACITY, QP

Page 2: CHAP 3 Deep Foundation Azizi 2012.ppt

Rules…. Of Meyerhof

Page 3: CHAP 3 Deep Foundation Azizi 2012.ppt

1st Example… Meyerhof

Page 4: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 5: CHAP 3 Deep Foundation Azizi 2012.ppt

2nd Example

Page 6: CHAP 3 Deep Foundation Azizi 2012.ppt

Please remember Meyerhof design procedure…

Page 7: CHAP 3 Deep Foundation Azizi 2012.ppt

2. VESIC METHOD

Page 8: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 9: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 10: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 11: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 12: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 13: CHAP 3 Deep Foundation Azizi 2012.ppt

3. COYLE & CASTELLO METHOD

Page 14: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 15: CHAP 3 Deep Foundation Azizi 2012.ppt

Example

Page 16: CHAP 3 Deep Foundation Azizi 2012.ppt

Example 2

Page 17: CHAP 3 Deep Foundation Azizi 2012.ppt

FRICTIONAL RESISTANCE, QS

CASE 1: SAND

Page 18: CHAP 3 Deep Foundation Azizi 2012.ppt

Critical Depth : 15 D

Roughly about 0.5 to 0.8

Meyerhof:

Average unit frictional resistance for high displacement piles:

Average unit frictional resistance for low displacement piles:

Page 19: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 20: CHAP 3 Deep Foundation Azizi 2012.ppt

4. LAMDA METHODCASE 2: CLAY

Page 21: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 22: CHAP 3 Deep Foundation Azizi 2012.ppt

5. ALPHA METHOD

CASE 2: CLAY

Page 23: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 24: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 25: CHAP 3 Deep Foundation Azizi 2012.ppt

6. BETA METHOD

Normally Consolidated Over Consolidated

CASE 2: CLAY

Page 26: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 27: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 28: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 29: CHAP 3 Deep Foundation Azizi 2012.ppt

• Types of foundation, dimension, length, allowable and ultimate bearing capacity will be decided by IKRAM

• most of the time the ‘SPT’ value used to define the bearing capacity

• For the government, the concrete and spun pile are most preferred

• for private project: bakau pile, micropile, concrete, spunpile, borepile etc.

JKR RECOMMENDATIONS:

Page 30: CHAP 3 Deep Foundation Azizi 2012.ppt

Example:

SI Report and Foundation Recommendation

Project title

Client

Page 31: CHAP 3 Deep Foundation Azizi 2012.ppt

Proposed Types of Foundation

Bearing capacity calculation

Detail properties of pile/situation

Recommendations

Page 32: CHAP 3 Deep Foundation Azizi 2012.ppt

Recommendations

Pile Load Test

Page 33: CHAP 3 Deep Foundation Azizi 2012.ppt

Recommendations

Page 34: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 35: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 36: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 37: CHAP 3 Deep Foundation Azizi 2012.ppt

SPT

vs

Depth

Page 38: CHAP 3 Deep Foundation Azizi 2012.ppt

Project Title

Client

Building desc.

Max. load

Min. load

No. borehole

Pile size

Proposed S.F

Page 39: CHAP 3 Deep Foundation Azizi 2012.ppt

Bearing capacity calculation (Meyerhof consideration)

Page 40: CHAP 3 Deep Foundation Azizi 2012.ppt

Qa

PILE LAYOUT

Page 41: CHAP 3 Deep Foundation Azizi 2012.ppt

SI REPORT :CASE STUDY 1

Page 42: CHAP 3 Deep Foundation Azizi 2012.ppt

SI REPORT :CASE STUDY 2

Page 43: CHAP 3 Deep Foundation Azizi 2012.ppt

SI REPORT :CASE STUDY 3

Page 44: CHAP 3 Deep Foundation Azizi 2012.ppt

i) Determined the average value of N over the depth

ii) Determined the skin friction, Qs

iii) Determined the end bearing, Qb

iv) Calculate ultimate bearing capacity

v) Allowable bearing capacity, Qa

Qs = Qs = k1.Nav.As.Nav.As

Qb = Qb = k2.N.Ab.N.Ab

Qult = Qs + QbQult = Qs + Qb

Qa= SQs/2 +Qb/3

PILE DESIGN BASED ON MODIFIED PILE DESIGN BASED ON MODIFIED MEYERHOF METHODMEYERHOF METHOD

Page 45: CHAP 3 Deep Foundation Azizi 2012.ppt

Type Of Soil Skin Friction Qs (k1) End Bearing Qb (k2)

Clay α . Cu . As (kN) 100 . N . Ab (kN)

Silt 1.7 . N . As (kN) 250 . N . Ab (kN)

Sand 2.0 . N . As (kN) 400 . N . Ab (kN)

Rock SPT = 50 400 . N . Ab (kN)

Ultimate Bearing Capacity Based On Type Of Soil (Modified Meyerhof)** Commonly used by JKR

Page 46: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 47: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 48: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 49: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 50: CHAP 3 Deep Foundation Azizi 2012.ppt

Pile Capacity Design Pile Capacity Design Factor of Safety (FOS)Factor of Safety (FOS)

PartialPartial factors of safety for shaft & base factors of safety for shaft & base capacities respectivelycapacities respectively

For shaft, use 1.5 (typical)For shaft, use 1.5 (typical)

For base, use 3.0 (typical)For base, use 3.0 (typical)

Qsu + Qbu

1.5 3.0Qall =

Page 51: CHAP 3 Deep Foundation Azizi 2012.ppt

Pile Capacity Design Pile Capacity Design Factor of Safety (FOS)Factor of Safety (FOS)

GlobalGlobal factor of safety for total ultimate factor of safety for total ultimate capacitycapacity

Use 2.0 (typical)Use 2.0 (typical)

Qsu + Qbu

2.0Qall =

Page 52: CHAP 3 Deep Foundation Azizi 2012.ppt

Pile Capacity Design Pile Capacity Design Factor of Safety (FOS)Factor of Safety (FOS)

Calculate using Calculate using BOTHBOTH approaches approaches (Partial & Global)(Partial & Global)

Choose the Choose the lower lower of the Qof the Qallall values values

Page 53: CHAP 3 Deep Foundation Azizi 2012.ppt

QQuu = Q = Qss + Q + Qbb

Overburden Soil Layer

Qs = skin friction

Qb = end bearing

Qu = ultimate bearing capacity

Pile Capacity Design Pile Capacity Design Single Pile CapacitySingle Pile Capacity

Page 54: CHAP 3 Deep Foundation Azizi 2012.ppt

Qu = .cs.As + cb.Nc.Ab

Qsu Qbu

Qu = Ultimate bearing capacity of the pile

a = adhesion factor (see next slide)

cs = average undrained shear strength for shaft

As = surface area of shaft

cb = undrained shear strength at pile base

Nc = bearing capacity factor (taken as 9.0)

Ab = cross sectional area of pile base

Pile Capacity Design Pile Capacity Design Single Pile Capacity : In Cohesive Soil Single Pile Capacity : In Cohesive Soil

Page 55: CHAP 3 Deep Foundation Azizi 2012.ppt

Pile Capacity DesignPile Capacity DesignSingle Pile Capacity:Single Pile Capacity: In Cohesive SoilIn Cohesive Soil

Adhesion factor (Adhesion factor () – Shear strength (S) – Shear strength (Suu) )

(McClelland, 1974)(McClelland, 1974)

Adhesion Factor

Su (kN/m2)25 75 100 125 150 17550

0

0.6

0.2

0.4

0.8

1.0

C/Su

Preferred Design Line

Page 56: CHAP 3 Deep Foundation Azizi 2012.ppt

Meyerhof Fukuoka

SPT Nfsu=2.5N

(kPa)

su =

(0.1+0.15N)*50(kPa)

fsu=su

(kPa)

0 0 5 1 5

1 2.5 12.5 1 12.5

5 12.5 42.5 0.7 29.75

10 25 80 0.52 41.6

15 37.5 117.5 0.4 47

20 50 155 0.33 51.15

30 75 230 0.3 69

40 100 305 0.3 91.5

Page 57: CHAP 3 Deep Foundation Azizi 2012.ppt

Correlation Between SPT N and fCorrelation Between SPT N and fsusu

fsu vs SPT N

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30 35 40 45

SPT N

fsu

(kP

a)

Meyerhof Fukuoka

Pile Capacity DesignPile Capacity DesignSingle Pile Capacity:Single Pile Capacity: In Cohesive SoilIn Cohesive Soil

Page 58: CHAP 3 Deep Foundation Azizi 2012.ppt

• Values of undrained shear strength, su can be obtained from the following:

Unconfined compressive test

Field vane shear test

Deduce based on Fukuoka’s Plot (minimum su )

Deduce from SPT-N values based on Meyerhof

Pile Capacity DesignPile Capacity DesignSingle Pile Capacity:Single Pile Capacity: In Cohesive SoilIn Cohesive Soil

NOTE: Use only direct field data for shaft friction prediction instead of Meyerhof

Page 59: CHAP 3 Deep Foundation Azizi 2012.ppt

Modified Meyerhof (1976):

Ult. Shaft friction = Qsu 2.5N (kPa)

Ult. Toe capacity = Qbu 250N (kPa)

or 9 su (kPa)

(Beware of base cleaning for bored piles – ignore

base capacity if doubtful)

Pile Capacity DesignPile Capacity DesignSingle Pile Capacity:Single Pile Capacity: In Cohesive SoilIn Cohesive Soil

Page 60: CHAP 3 Deep Foundation Azizi 2012.ppt

Modified Meyerhof (1976):Modified Meyerhof (1976):

Ult. Shaft Friction = QUlt. Shaft Friction = Qsusu 2.0N (kPa) 2.0N (kPa)

Ult. Toe Capacity= QUlt. Toe Capacity= Qbubu 250N – 400N (kPa) 250N – 400N (kPa)

Pile Capacity DesignPile Capacity DesignSingle Pile Capacity:Single Pile Capacity: In Cohesionless In Cohesionless

SoilSoil

Page 61: CHAP 3 Deep Foundation Azizi 2012.ppt

Load (kN)

Pile Capacity Design

50

40

30

20

10

0

0 100 200 300 400

Qsu + QbuQbu

Qsu + Qbu

1.5 3.0

Qsu + Qbu

2.0

Qsu

De

pth

(m

)

Page 62: CHAP 3 Deep Foundation Azizi 2012.ppt

2.2 ANALYSIS AND DESIGN OF PILE UNDER LATERAL STATIC LOADS

Piles behaviour…

Page 63: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 64: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 65: CHAP 3 Deep Foundation Azizi 2012.ppt

STEPS OF CALCULATION: BRINCH & HANSEN

Page 66: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 67: CHAP 3 Deep Foundation Azizi 2012.ppt

Ultimate soil resistance

Page 68: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 69: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 70: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 71: CHAP 3 Deep Foundation Azizi 2012.ppt

BROM’S METHOD

Page 72: CHAP 3 Deep Foundation Azizi 2012.ppt

SOIL TYPE : SANDY / COHESIONLESS

SHORT PILE LONG PILE

Page 73: CHAP 3 Deep Foundation Azizi 2012.ppt

SOIL TYPE : COHESIVE

SHORT PILE LONG PILE

Page 74: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 75: CHAP 3 Deep Foundation Azizi 2012.ppt

FR

EE

HE

AD

FIX

HE

AD

C SOIL SOIL

Page 76: CHAP 3 Deep Foundation Azizi 2012.ppt

ULTIMATE LATERAL LOAD CAPACITY BY BROM’S

Page 77: CHAP 3 Deep Foundation Azizi 2012.ppt

ULTIMATE LATERAL LOAD CAPACITY BY BROM’S

Page 78: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 79: CHAP 3 Deep Foundation Azizi 2012.ppt

LONG PILE

Page 80: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 81: CHAP 3 Deep Foundation Azizi 2012.ppt

PILE DRIVING FORMULA

Page 82: CHAP 3 Deep Foundation Azizi 2012.ppt

Courtesy: Transportation Curriculum Coordination Council, U.S

Pile Driving System

Page 83: CHAP 3 Deep Foundation Azizi 2012.ppt

Hammers

Steam Hammer

Open End Diesel

Closed End Diesel

Hydraulic HammersVibratory Hammers

Jack-In

Page 84: CHAP 3 Deep Foundation Azizi 2012.ppt

Cushions

Hammer cushion set in pile cap

different types of cushions

Typical plywood pile cushion

Page 85: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 86: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 87: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 88: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 89: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 90: CHAP 3 Deep Foundation Azizi 2012.ppt

PILE LOAD TEST

Slow Maintain Pile Load Test

Page 91: CHAP 3 Deep Foundation Azizi 2012.ppt

PILE LOAD TEST

Page 92: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 93: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 94: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 95: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 96: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 97: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 98: CHAP 3 Deep Foundation Azizi 2012.ppt

FAILURE ??

• when pile settlement occur rapidly

• when the pile head has moved 10% of pile tip diameter

• gross settlement of 38mm for 2X design load

• residual settlement of less than 6.5mm

Page 99: CHAP 3 Deep Foundation Azizi 2012.ppt

INTERPRETATION OF TEST DATA

Page 100: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 101: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 102: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 103: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 104: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 105: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 106: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 107: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 108: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 109: CHAP 3 Deep Foundation Azizi 2012.ppt

NEGATIVE SKIN FRICTION

CASE 1

Page 110: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 2

Page 111: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 3

Page 112: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 113: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 114: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 115: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 116: CHAP 3 Deep Foundation Azizi 2012.ppt

2.4. PULLOUT RESISTANCE OF PILES

CASE 1: CLAYEY SITE

Page 117: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 2: SAND

Page 118: CHAP 3 Deep Foundation Azizi 2012.ppt

Determination of net uplift capacity….

Page 119: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 120: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 121: CHAP 3 Deep Foundation Azizi 2012.ppt

2.5. BEARING CAPACITY OF PILES RESTING ON ROCK

2.5

FS ≥ 3

Scale effect cause of rock fractured

( 4 ≤ S.E ≤ 5 )

Page 122: CHAP 3 Deep Foundation Azizi 2012.ppt

2.5

Page 123: CHAP 3 Deep Foundation Azizi 2012.ppt

2.6. BEARING CAPACITY OF GROUP PILES

2.6

• most cases, piles used in groups

• pile cap is constructed over group of piles

• when piles placed close to each other, stresses transmitted will overlap >>> reduce the load-bearing capacity of pile

• practice, center-to-center pile spacing, d = minimum 2.5D

• in ordinary situations, 3D ≤ d ≤ 3.5D

• consider group efficiency

Page 124: CHAP 3 Deep Foundation Azizi 2012.ppt

2.6

Page 125: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 1: Group of Piles in Sand

If > 1 (piles spacing are large), piles will behave as individual piles, thus in

practice make sure < 1

Alternative solution…

2.6

Page 126: CHAP 3 Deep Foundation Azizi 2012.ppt

General Conclusions….

2.6

Page 127: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 2: Group of Piles in Clay

Steps of design:

2.6

Page 128: CHAP 3 Deep Foundation Azizi 2012.ppt

CASE 3: Group of Piles in Rock

Minimum center-to-center spacing = D + 300mm

2.6

Page 129: CHAP 3 Deep Foundation Azizi 2012.ppt

2.6

Page 130: CHAP 3 Deep Foundation Azizi 2012.ppt

2.6

Page 131: CHAP 3 Deep Foundation Azizi 2012.ppt

2.6

Page 132: CHAP 3 Deep Foundation Azizi 2012.ppt

2.7. ELASTIC SETTLEMENT OF PILES

Page 133: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 134: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 135: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 136: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 137: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 138: CHAP 3 Deep Foundation Azizi 2012.ppt

2.8. ELASTIC SETTLEMENT OF GROUP PILESGENERAL CASES

SAND & GRAVEL CASES

Page 139: CHAP 3 Deep Foundation Azizi 2012.ppt

Load

Time

Components of settlement

Constructiontime

Page 140: CHAP 3 Deep Foundation Azizi 2012.ppt

Load

Time

Components of settlement

Constructiontime

Settlement

Time

Initialsettlement si

Const.time

Page 141: CHAP 3 Deep Foundation Azizi 2012.ppt

Load

Time

Components of settlement

Constructiontime

Settlement

Time

Consolidationsettlement sc

Initialsettlement si

Total finalsettlement sTf

Const.time

Page 142: CHAP 3 Deep Foundation Azizi 2012.ppt

2.8. CONSOLIDATION SETTLEMENT OF GROUP PILES

PROCEDURE

Page 143: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 144: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 145: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 146: CHAP 3 Deep Foundation Azizi 2012.ppt
Page 147: CHAP 3 Deep Foundation Azizi 2012.ppt

ACKNOWLEDGEMENT….

Apart of this presentation are from my former students efforts, Sem. 1 2003/04 until now… I’m thank you for their support and works!

Other References,•B.M., Das : Principles of Foundation Engineering• Liu Evett : Soils and Foundations• Coduto: Foundation Design• Dunn, Anderson, Kiefer: Fundamentals of Geotechnical Analysis •Monash University, Australia• Ir Mohamed bin Daud, JKR, Kelantan

Page 148: CHAP 3 Deep Foundation Azizi 2012.ppt

Terima KasihTerima KasihNor Azizi YusoffNor Azizi Yusoff

[email protected]@uthm.edu.my019-7779469019-7779469