Chap 09 Sinusoids and Phasors-Rev

Embed Size (px)

Citation preview

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    1/67

    Chap 09 Sinusoids and Phasors

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    2/67

    Chap 09 Sinusoids and Phasors 2

    Outline

    Introduction Sinusoids

    Phasors

    Phasor Relationships for Circuit Elements

    Impedance and Admittance

    Kirchhoffs Laws in the Frequency Domain

    Impedance Combinations

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    3/67

    Chap 09 Sinusoids and Phasors 3

    Introduction

    Why sinusoidal waveforms are useful to engineers?

    1. Appears everywhere Vibration of a string, ripples of ocean surface, and natural response

    of underdamped second-order systems

    2. Easily generated

    3. Using Fourier analysis, everypracticalperiodic

    signal can be represented by a linear combination

    of sinusoidal signals

    4. Easily analyzed, such as differentiate and integrate

    Sinusoid: a signal that has the form of the sine or cosinefunction.

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    4/67

    Periodic Function

    A periodic function is one that satisfies f(t) =f(t+ nT),for all tand for all integers n.

    Theperiod Tis the number of seconds per cycle

    The cyclic frequencyf= 1/Tis the number of cycles

    per second

    Chap 09 Sinusoids and Phasors 4

    T

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    5/67

    Chap 09 Sinusoids and Phasors 5

    Sinusoids

    Consider the sinusoidal voltagev(t) = Vm cos(t+)

    where

    Vm : the amplitude of the sinusoid

    : the angular frequency in radians/st+ : the argumentof the sinusoid

    :phase ofv(t) in [-180, 180] or [-, ] rads/sec

    The period Tis given as

    2 2 1; in Hertz (Hz)

    2fT

    f f

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    6/67

    Chap 09 Sinusoids and Phasors 6

    Phase Lead or Lag

    Two sinusoids with the same frequency.

    1 1 1 1

    2 2 2 2

    ( ) cos( ), 0

    ( ) cos( ), 0

    m m

    m m

    v t V t V

    v t V t V

    1 2

    1 2

    1 2 1 21 2

    1 2

    1 2

    1 2 1 2 2 1

    ( ) and ( ) are .

    ( ) and ( ) are .

    , ( ) ( ) by

    0

    0 leads

    0 lag, ( ) ( ) b

    :

    0 :

    ys

    in phav t v t

    v

    se

    out of phaset v t

    v t v t

    v t v t

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    7/67

    Phase Lead or Lag (cont .)

    Chap 09 Sinusoids and Phasors 7

    1

    2

    2 1

    ( ) sin( )( ) sin( )

    ( ) leads ( ) by .

    m

    m

    v t V t v t V t

    v t v t

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    8/67

    Trigonometric Identities

    Chap 09 Sinusoids and Phasors 8

    sin( ) sin cos cos sin

    cos( ) cos cos sin sin

    A B A B A B

    A B A B A B

    sin( 180 ) sin

    cos( 180 ) cos

    sin( 90 ) cos

    cos( 90 ) sin

    t t

    t t

    t t

    t t

    2 2 1

    cos sin cos( )

    , tan

    A t B t C t

    BC A B

    A

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    9/67

    Chap 09 Sinusoids and Phasors 9

    Example 9.1

    Q: Find the amplitude, phase, period, and frequency ofthe sinusoid

    v(t) = 12cos(50t+ 10)

    Sol

    The amplitude is Vm = 12V.

    The phase is = 10

    The period

    The frequency is

    2 20.1257 s.

    50T

    17.958 Hz.f

    T

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    10/67

    Chap 09 Sinusoids and Phasors 10

    Example 9.2

    Q: Calculus the phase angle between v1 = -10 cos (t+50) and v2 = 12 sin (t- 10). State which sinusoid is

    leading.

    Sol

    v1 = -10 cos (t+ 50) = 10 cos (t+ 50 - 180)

    v1 = 10 cos (t- 130)

    and

    v2 = 12 sin (

    t- 10

    ) = 12 cos (

    t- 10

    - 90

    )v2 = 12cos (t- 100)

    1=-130, 2=-100; 2-1=30

    v2 leads v1by 30.

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    11/67

    Chap 09 Sinusoids and Phasors 11

    Phasors

    Phasor: A phasor is complex number which representsthe amplitude andphase of a sinusoid.

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    12/67

    Chap 09 Sinusoids and Phasors 12

    Complex Number Representations

    Complex number representations:

    j

    rerz

    jyxz

    Polar form:

    Rectangular form:

    Exponential form: j

    z

    z x j

    r

    y

    z

    r

    e

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    13/67

    Chap 09 Sinusoids and Phasors 13

    Complex Plane

    )sin(cos

    jr

    ryjxz

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    14/67

    Chap 09 Sinusoids and Phasors 14

    Basic Operations of Complex Numbers

    Addition:

    Subtraction:

    Multiplication:

    Division:

    )()( 212121 yyjxxzz

    )()( 212121 yyjxxzz

    )(212121

    rrzz

    )( 212

    1

    2

    1 r

    r

    z

    z

    B i O ti f C l N b

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    15/67

    Chap 09 Sinusoids and Phasors 15

    Basic Operations of Complex Numbers

    (cont .)

    Reciprocal:

    Square Root:

    Complex Conjugate:

    )(11

    rz

    )2/( rz

    j

    rerjyxz

    )(*

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    16/67

    Chap 09 Sinusoids and Phasors 16

    Example 9.3

    Q: Evaluate these complex numbers:

    Sol

    1/ 2(a) (40 50 20 30 )

    10 30 (3 4)(b)

    (2 4)(3 5)*

    j

    j j

    1/ 2

    40 50 20 30 47.72

    40 50 20 30 6

    40 50 25.71 30.64

    20 30 17

    (a) 40(cos50 sin50 )

    20 cos( 30 ) sin( 30 )

    43.0

    .32 1

    3 25.63

    1

    20

    2

    .

    .

    64

    .91 81

    0

    j

    j

    j

    j

    j

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    17/67

    Chap 09 Sinusoids and Phasors 17

    Example 9.3 (cont .)

    8.66 5 (3 4 )(b)

    (2 4)(3 5)

    11.33 9 14.73 37.66

    1

    10 30 (3 4)

    (2 4)(3 5)

    4 22 26.08 122.4

    16

    *

    0 05

    7

    .56 .13

    j j j

    j j

    j

    j j

    j

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    18/67

    Chap 09 Sinusoids and Phasors 18

    Sinusoids and Complex Number

    Euler's identity: cos sinje j

    Thus ( ) can be written a

    (

    s

    Re( )) j t

    v t

    v et V

    cos Re( )

    sin Im( )

    j

    j

    e

    e

    ( )cos( ) Re( )( )

    Re( )jm

    j t

    m m

    j t

    V t V

    e

    v e

    V e

    t

    Here is the of ( ).jm m phasor representation v tV e V V

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    19/67

    Chap 09 Sinusoids and Phasors 19

    Representation ofVejt

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    20/67

    Chap 09 Sinusoids and Phasors 20

    Phasors

    cos( )( ) m mV tv Vt V

    (Time-domainrepresentation)

    (Phasor-domainrepresentation)

    Phasor: A phasor is a complex number which

    represents the amplitude andphase of a sinusoid.

    Given the frequency , the phasor can equivalentlyrepresent the signal v(t).

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    21/67

    Chap 09 Sinusoids and Phasors 21

    Sinusoid-Phasor Transformation

    Time domainrepresentation

    Phasor domainrepresentation

    )cos( tVm

    )(sin tVm

    )cos( tIm

    )sin( tIm

    mV

    )90( mV

    mI

    )90( mI

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    22/67

    Chap 09 Sinusoids and Phasors 22

    mV

    Phasor Diagram

    Vm

    Im

    Vm V

    Im

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    23/67

    Chap 09 Sinusoids and Phasors 23

    Example 9.4

    Q: Transform these sinusoid to phasors:

    Sol

    (a) 6cos(50 40 ) A

    (b) 4sin(30 50 ) V

    i t

    v t

    (a) 6cos(50 40 ) has the phasor

    (b) Since sin cos( 90 )

    4sin(30 50 ) 4cos(30 50 90 )

    4cos(30 140 ) V

    The phasor of i

    6 40

    4 140s

    A

    V

    i t

    A A

    v t t

    t

    v

    I

    V

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    24/67

    Chap 09 Sinusoids and Phasors 24

    Example 9.5

    Q: Find the sinusoid representation by these phasors:

    Sol

    20

    (a) 3 4 A

    ( ) 8 Vj

    j

    b j e

    I

    V

    (a) 3 4 5 126.87

    ( ) 5cos( 126.87 A)i

    j

    t t

    I

    (b) 1 90 ,

    8 20 (1 90 ) (8 20 )

    8 90 20 8 70 V

    ( ) 8cos( 70 ) V

    j

    j

    v t t

    V

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    25/67

    Chap 09 Sinusoids and Phasors 25

    Example 9.6

    Q: Given i1(t) = 4cos(

    t+30

    ) A and i2(t) = 5sin (

    t-20) A, find their sum.

    Sol

    1

    2

    1

    1

    2

    1 2

    2

    4cos( 30 )

    5sin( 20 ) 5cos( 20 90 ) 5cos( 110 )

    4 30 5 110

    3.464 2 1.71 4.698 1.754 2.698

    3.218 56.97 A

    4 30

    5 110

    ( ) 3.218cos( t

    i t

    i t t t

    i i i

    j j j

    i t

    I

    I

    I I I

    56.97 A)

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    26/67

    Chap 09 Sinusoids and Phasors 26

    Differentiation and Integration

    )Re()Re(

    )90cos()sin(90 tjjjtj

    m

    mm

    ejeeeV

    tVtVdt

    dv

    V

    dvj

    dt

    V

    (Time domain) (Phasor domain)

    (Time domain) (Phasor domain)

    90

    sin( ) cos( 90 )cos( )

    Re Re

    m mm

    j t j j

    j tm

    V t V t vdt V t dt

    V e e e ej

    V

    vdtj

    V

    ( ) cos( )mv t V t

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    27/67

    Chap 09 Sinusoids and Phasors 27

    Differentiation and Integration (cont.)

    V

    Vjdt

    dv

    jvdt V

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    28/67

    Chap 09 Sinusoids and Phasors 28

    Example 9.7

    Q: Using the phasor approach, determine the current i(t)

    in a circuit described by the integral and differential

    equation

    Sol

    4 8 3 50cos(2 75 )di

    i idt t dt

    84 3 50 75

    2, so

    (4 4 6) 50 75

    Converting this to the time domain

    ( ) 4.642cos(2 143 A

    ,

    .2 )

    i t

    j

    j

    t

    j

    j

    II I

    I

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    29/67

    ch09_Sinusoids and Phasors 29

    Remarks

    The phasor technique provides a way torepresent or compute the operations (including

    additions, differentiations, and integrations) of

    sinusoids. Note that the sinusoidal frequency is assumed

    to be fixed to a common value.

    Phasor Relationships for Circuit

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    30/67

    Chap 09 Sinusoids and Phasors 30

    Phasor Relationships for CircuitElements: Resistor

    By Ohm's la

    cos( )

    ,

    cos( )

    wm

    m

    m

    m

    i I t

    v iR

    I

    RI RRI t

    I

    V I

    Time domain Phasor domain Phasor diagram

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    31/67

    Chap 09 Sinusoids and Phasors 31

    Inductor in Phasor Domain

    Time domain Phasor domain Phasor diagram

    cos( )

    cos( 90 )

    90

    m

    m

    m

    mi I t

    div L LI

    I

    j L

    tdt

    LI

    I

    V I

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    32/67

    Chap 09 Sinusoids and Phasors 32

    Capacitor in Phasor Domain

    Phasor diagramTime domain Phasor domain

    cos( )

    cos( 90 )

    90

    m

    m

    m

    mv V t

    dvi C CV t

    dt

    C

    V

    V j C

    V

    I V

    Summary of Voltage-Current

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    33/67

    Chap 09 Sinusoids and Phasors 33

    Summary of Voltage-Current

    Relationships

    Element Time domain Frequencydomain

    R V=Ri V =RI

    L V =jLI

    C

    dt

    diLv

    dt

    dvCi

    Cj

    IV

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    34/67

    Chap 09 Sinusoids and Phasors 34

    Example 9.8

    Q: The voltage v = 12 cos(60t+ 45

    ) is applied to a 0.1-Hinductor. Find the steady-state current through the inductor.

    Sol

    12 45 V , where 60rad/s.Hence,

    12 45 12 452 45

    ( ) 2cos(60 4 A5 )

    A60 0.1 6 90

    Converting,

    j L

    i t

    j

    t

    j L

    V I

    VI

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    35/67

    Chap 09 Sinusoids and Phasors 35

    Impedance and Admittance

    or VZ V ZII

    The impedance Z of a circuit is the ratio of the phasorvoltage V to the phasor current I, measured in ohms ().

    Impedance and Admittances of

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    36/67

    Chap 09 Sinusoids and Phasors 36

    Impedance and Admittances of

    Passive Elements

    Element Impedance Admittances

    R Z =R

    L Z =jL

    C Y =jCCj

    1Z

    R

    1Y

    Lj

    1Y

    Equivalent Circuits at DC & High

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    37/67

    Chap 09 Sinusoids and Phasors 37

    Equivalent Circuits at DC & High

    Frequencies

    0

    L j LZ

    1C

    j CZ

    General Passive Circuit In Phasor

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    38/67

    Chap 09 Sinusoids and Phasors 38

    General Passive Circuit In PhasorDomain

    R jX Z Z

    2 2 1

    where

    , tan

    and

    cos Re( ) : of ,

    Resistance

    Reactancsin Im( ) : of e

    R

    X

    XR X R

    Z

    Z Z Z

    Z Z Z

    Inductive and Capacitive

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    39/67

    Chap 09 Sinusoids and Phasors 39

    Inductive and CapacitiveImpedance

    X> 0: inductive impedance

    X=0: pure resistor

    X

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    40/67

    Chap 09 Sinusoids and Phasors 40

    Admittance

    1 Y

    Z

    I

    V

    G Bj Y

    G = Re Y is called the conductance.

    B = Im Y is called the susceptance.

    The admittance Y of a circuit is the reciprocal of theimpedance, measured in siemens (S).

    Ad itt d I d

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    41/67

    Chap 09 Sinusoids and Phasors 41

    Admittance and Impedance

    2

    2

    2 2 2

    1

    1

    1

    ,

    G jB

    R jXR jX R jX

    G jBR

    G BR X

    R

    jX R

    X R X

    jX R jX

    YZ

    E l 9 9

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    42/67

    Chap 09 Sinusoids and Phasors 42

    Example 9.9

    Q: Find v(t) and i(t) in the circuit.

    E l 9 9 ( )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    43/67

    Chap 09 Sinusoids and Phasors 43

    Example 9.9 (cont .)

    From the voltage source 10 cos 4t, = 4,

    The impedance is

    Hence the current

    V010 sV

    1 15 54 0.1

    5 2.5

    j C j

    j

    Z

    2 2

    10 0 10(5 2.5)

    5 2.5 5 2.5

    1.6 0.8 1.789 26.57 A

    s j

    j

    j

    VI

    Z

    E l 9 9 ( )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    44/67

    Chap 09 Sinusoids and Phasors 44

    Example 9.9 (cont .)

    The voltage across the capacitor is

    Converting I and V, we get

    1.789 26.57

    4 0.1

    1.789 26.574.47 63.43 V

    0.4 90

    j C j

    C

    IV IZ

    A( ) 1.789cos(4 26.57 )

    ( ) 4.47cos(4 63.43 ) V

    i t t

    v t t

    Kirchhoffs Law in the Frequency

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    45/67

    Kirchhoff s Law in the FrequencyDomain

    The KCL and KVL are still applicable in thefrequency domain.

    Chap 09 Sinusoids and Phasors 45

    1 2 1 2

    1 2 1 2

    KVLTime do F

    0 0

    KC

    requency domain

    L

    m n

    0 0

    ain n

    n n

    v v v

    i i i

    V V V

    I I I

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    46/67

    Chap 09 Sinusoids and Phasors 46

    KVL and KCL in the Phasor Domain

    1 1

    1

    1

    2 2

    2

    2

    For , let , ,..., , be the voltages around a closed loop.

    0

    In the sinusoidal steady state, each voltage may be written in cosine

    cos( ) cos(

    form.

    o

    V

    ) s

    K

    c

    L

    m m n

    n

    m

    n

    v

    V t V t

    v v

    v v v

    V

    1 2

    1 2

    1

    1 2

    1 2

    1 2

    2

    This can be written as

    Re( ) Re( ) Re( ) 0

    Re 0

    Re 0; ( )

    ; (

    ( ) 0

    0

    n

    n

    k

    jj jj t j t j t

    m m mn

    jj j j t

    m m mn

    jj

    n

    n

    t

    n K mk

    V e e V e e V e e

    V e V e V e

    V

    t

    e

    e e

    V V

    V V

    V

    V V

    KVL hold

    0

    s f

    )

    or phasor!

    j te t

    1 2KCL holds forSimilarily, pha or s 0n I I I

    S i C t d I d

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    47/67

    Chap 09 Sinusoids and Phasors 47

    Series-Connected Impedances

    eq 1

    1 2 1 2

    2

    ( )N

    N

    N

    V V V V I Z Z Z

    VZ Z Z

    IZ

    V lt Di i i P i i l

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    48/67

    Chap 09 Sinusoids and Phasors 48

    Voltage-Division Principle

    then,andSince 2211

    21

    IZVIZV

    ZZ

    VI

    1 21 2

    1 2 1 2

    Voltage division princile ,:

    Z Z

    Z Z ZV V

    ZV V

    P ll l C t d I d

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    49/67

    Chap 09 Sinusoids and Phasors 49

    Parallel-Connected Impedances

    eq

    1

    2

    2

    2

    1

    1

    1 1 1

    1 1

    1

    1

    N

    N

    N

    I I I I VZ Z Z

    I

    VZ Z Z Z

    eq 1 2 N Y Y Y Y

    C t Di i i P i i l

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    50/67

    Chap 09 Sinusoids and Phasors 50

    Current-Division Principle

    2211eq

    21

    21

    2121eq

    eq/11/

    111

    ZIZIIZV

    ZZ

    ZZ

    ZZYYYZ

    2 1

    1 2

    1 2

    1 2

    Current-division principle: ,

    Z Z

    Z Z ZI I

    ZI I

    Delta ()-to-Wye (Y) and

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    51/67

    Chap 09 Sinusoids and Phasors 51

    Delta () to Wye (Y) andWye (Y)-to-Delta () Transformations

    Delta () to Wye (Y) Transformation

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    52/67

    Chap 09 Sinusoids and Phasors 52

    Delta ()-to-Wye (Y) Transformation

    -Y Conversion

    1

    2

    3

    b c

    a b c

    c a

    a b c

    a b

    a b c

    Z

    Z Z Z

    Z

    Z Z Z

    Z

    Z Z

    Z

    ZZ

    Z

    Wye (Y) to Delta () Transformation

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    53/67

    Chap 09 Sinusoids and Phasors 53

    Wye (Y)-to-Delta () Transformation

    Y- Conversion

    1 2 2 3 3 1

    1

    1 2 2 3 3 1

    2

    1 2 2 3 3 1

    3

    a

    b

    c

    Z Z Z Z Z Z

    Z

    Z Z Z Z Z Z

    Z

    Z Z Z Z ZZ

    Z

    Z

    Z

    Z

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    54/67

    Chap 09 Sinusoids and Phasors 54

    A delta () or wye (Y) circuit is said to be balancedif it has equal impedances in all three branches.

    or1

    3

    3Y Y Z Z Z Z

    .321 andwhere cbaY ZZZZZZZZ

    Example 9 10

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    55/67

    Chap 09 Sinusoids and Phasors 55

    Example 9.10

    Q: Find the input impedance of the circuit. Assume that

    the circuit operations at = 50 red/s.

    Example 9 10 (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    56/67

    Chap 09 Sinusoids and Phasors 56

    Example 9.10 (cont .)

    31

    3

    32

    1 1

    50 2 10

    1 13 3

    50 10 10

    8 8 50 0.2

    10

    (3 2)

    (8 10)

    j

    j

    j C j

    j C j

    j L j j

    Z

    Z

    Z

    Z1

    Z3

    Z2

    Example 9 10 (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    57/67

    Chap 09 Sinusoids and Phasors 57

    Example 9.10 (cont .)

    in 1 2 3

    2 2

    (3 2)(8 10)10

    11 8

    (44 14)(11 8)10 10 3.22 1.07

    11 83.22 11.07

    j jj

    j

    j jj j j

    j

    Z Z Z Z

    The input impedance is

    Z1

    Z2

    Z3

    Example 9 11

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    58/67

    Chap 09 Sinusoids and Phasors 58

    Example 9.11

    Q: Determine v0(t) in the circuit.

    Example 9 11 (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    59/67

    Chap 09 Sinusoids and Phasors 59

    Example 9.11 (cont .)

    3

    20cos(4 15 ) 20 15 V, 4

    1 110mF 25

    4 10 10

    5 H 4 5 20

    s sv t

    jj C j

    j L j j

    V

    Z1 Z2

    Example 9 11(cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    60/67

    Chap 09 Sinusoids and Phasors 60

    Example 9.11(cont .)

    Let

    Z1 = Impedance of the 60- resistor

    Z2 = Impedance of the parallel combination of the 10-

    mF capacitor and the 5-H inductor

    Then Z1 = 60 and

    2

    25 2100

    025 20

    25 20

    j jj jj

    j j

    Z

    Z1Z2

    Example 9 11 (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    61/67

    Chap 09 Sinusoids and Phasors 61

    Example 9.11 (cont .)

    By the voltage-division principle,

    Convert this to the time domain and obtain

    2

    1 2

    100(20 15 )

    60 100

    (0.8575 30.96 ) (20 15 17.15 1) . V5 96

    o s

    j

    j

    Z

    ZV

    ZV

    ( ) 17.15cos(4 15.96 V)ov t t

    Example 9 12

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    62/67

    Example 9.12

    Chap 09 Sinusoids and Phasors 62

    4(2 4) 4(4 2)(1.6 0.8)

    4 2 4 8 10

    4(8) 8(2 4)3.2 , (1.6 3.2)

    10 10

    an

    bn cn

    j j jj

    j j

    j jj j

    Z

    Z Z

    62

    .Find I-Y transformation

    Example 9 12 (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    63/67

    Example 9.12 (cont .)

    Chap 09 Sinusoids and Phasors 63

    (1.6 0.8) ; 3.2 ; (1.6 3.2)an bn cnj j j Z Z Z

    63

    .Find I-Y transformation

    12 3 || 6 8

    13.6 1 13.64 4.2045

    3

    0 0

    13.64 4.204

    .666 4.204

    an bn cnj j

    j

    Z

    VI

    Z

    Z Z Z

    Application: Phase Shifters

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    64/67

    Chap 09 Sinusoids and Phasors 64

    Application: Phase Shifters

    i

    iio

    RCCR

    RC

    RCj

    RCj

    CjR

    R

    V

    VVV

    1tan

    1

    11

    1

    222

    Leading

    output

    Phase Shifters (cont )

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    65/67

    Chap 09 Sinusoids and Phasors 65

    Phase Shifters (cont.)

    i

    iio

    RCCR

    RCj

    CjR

    Cj

    V

    VVV

    1

    222 tan1

    1

    11

    1

    1

    Lagging

    output

    Example 9 13

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    66/67

    Chap 09 Sinusoids and Phasors 66

    Example 9.13

    Q: Design anRCcircuit to provide a phase of 90

    leading.Z

    Example 9 13

  • 7/28/2019 Chap 09 Sinusoids and Phasors-Rev

    67/67

    Example 9.13

    Using voltage division,

    20(20 20)2 12 40 (20 20) 40 20

    jj j j

    Z

    1

    1

    1

    2

    45 V3

    190

    3

    Z 12 4

    Z 20 12 24

    and

    20 245

    20 20 2

    2 245 45

    2 3

    i i

    o

    i

    i

    j

    j j

    j

    V

    V

    V

    V V

    V

    V

    Z