27
Challenges for Polarimetry at the ILC Spin Tracking Studies Moritz Beckmann , Anthony Hartin, Jenny List DESY - FLC ECFA Linear Collider Workshop May 30, 2013

Challenges for Polarimetry at the ILC - Spin Tracking Studies

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Challenges for Polarimetry at the ILCSpin Tracking Studies

Moritz Beckmann, Anthony Hartin, Jenny List

DESY - FLC

ECFA Linear Collider Workshop

May 30, 2013

Introduction: Polarimetry at the ILC

• Laser-Compton-Polarimeters for 45-500 GeV beam energyin the beam delivery system (BDS)

• Polarimeters measure with 0.25 % systematic uncertainty(goal)

• Additionally: calibration with average polarization frome+-e− collision data(e. g. W+-W− cross section)

Moritz Beckmann DESY-FLC ECFA 2013 2/ 17

Introduction: Polarimetry at the ILC

150 m~1 650 m

upstream polarimeter IP

downstream polarimeter

• What happens between the polarimeters and thee+-e− IP? → simulation

• Must understand spin diffusion/depolarization to 0.1 %

Moritz Beckmann DESY-FLC ECFA 2013 3/ 17

T-BMT Precession

• Spin transport through electromagneticfields is described by T-BMT equation(semi-classical)

• Approximation (~B⊥ only) spin precession

ϑspin =(

g−22 · γ + 1

)︸ ︷︷ ︸≈568 @ 250GeV

·ϑorbit B

• Polarization vector ~P =

Px

Py

Pz

with polarization |~P|

• In this talk: only longitudinal polarization Pz

Moritz Beckmann DESY-FLC ECFA 2013 4/ 17

T-BMT Precession

• Spin transport through electromagneticfields is described by T-BMT equation(semi-classical)

• Approximation (~B⊥ only) spin precession

ϑspin =(

g−22 · γ + 1

)︸ ︷︷ ︸≈568 @ 250GeV

·ϑorbit B

• Polarization vector ~P =

Px

Py

Pz

with polarization |~P|

• In this talk: only longitudinal polarization Pz

Moritz Beckmann DESY-FLC ECFA 2013 4/ 17

Spin Fan-Out in Quadrupole Magnets

PP'P

• Different precession angles⇒ (not only longitudinal!) polarization “lost”

• Recoverable by second quadrupole, unlike for stochasticprocesses (radiative depolarization)

Moritz Beckmann DESY-FLC ECFA 2013 5/ 17

Particle / Spin Transport

• Simulation of particle and spin transport (incl. completelattice): Bmad (www.lepp.cornell.edu/~dcs/bmad)

• 40 000 macroparticles per bunch, 1000 runs with randomlygenerated bunches

• RDR beam parameters (2007)

150 m~1 650 m

upstream polarimeter IP

downstream polarimeter

• In the following: collision effects (incl. crossing angle)and spin transport behind the IP

• Previous studies: spin transport up to the IP unproblematic, ∆Pz � 0.1 %

Moritz Beckmann DESY-FLC ECFA 2013 6/ 17

Particle / Spin Transport

• Simulation of particle and spin transport (incl. completelattice): Bmad (www.lepp.cornell.edu/~dcs/bmad)

• 40 000 macroparticles per bunch, 1000 runs with randomlygenerated bunches

• RDR beam parameters (2007)

150 m~1 650 m

upstream polarimeter IP

downstream polarimeter

• In the following: collision effects (incl. crossing angle)and spin transport behind the IP

• Previous studies: spin transport up to the IP unproblematic, ∆Pz � 0.1%

Moritz Beckmann DESY-FLC ECFA 2013 6/ 17

Beam-Beam Collision Effects

• T-BMT precession: deflection from colliding bunch(∼ 10−4 rad)

• Sokolov-Ternov: spin flip by emission of beamstrahlung

e e Pairs+ _

BeamstrahlungA. Vogel

• Simulation with Guinea-Pig++

• Directly connected to transport simulation

Moritz Beckmann DESY-FLC ECFA 2013 7/ 17

Results

Moritz Beckmann DESY-FLC ECFA 2013 8/ 17

Spin Transport without Collision

distance s along BDS [m]3400 3450 3500 3550

zlo

ng

. po

lari

zati

on

P

0.76

0.77

0.78

0.79

0.8

]-3

rela

tive

ch

ang

e [1

0

-40

-20

0

IP DP

-e

extractionline

quadrupoles

energyspectrometer

chicanepolarimeter

chicane

DP: downstream-polarimeter

• Without collision with the e+ beam

• Longitudinal polarization hardly differs between IP anddownstream polarimeter

Moritz Beckmann DESY-FLC ECFA 2013 9/ 17

Spin Transport after Collision

distance s along BDS [m]3400 3450 3500 3550

zlo

ng

. po

lari

zati

on

P

0.76

0.77

0.78

0.79

0.8

]-3

rela

tive

ch

ang

e [1

0

-40

-20

0

IP DP

-e

no collisionlumi-weightedafter collisionmeasurable

no collisionlumi-weightedafter collisionmeasurable

DP: downstream-polarimeter

• Different spin transport after collision with the e+ beamdue to larger angular divergence / energy spread

• Large spin fan-out in extraction line quadrupoles

• Measurable := within the laser spot of the polarimeter

Moritz Beckmann DESY-FLC ECFA 2013 10/ 17

Downstream Measurement

• Polarization measured in vertical chicane ⇒ dispersion

• Laser spot size at Compton-IP only ∼ 0.1 - 1mmLimited by requesting large intensity and high-frequency pulses

• But: low-energy tail not welcome in Compton interaction

No desire to redesign polarimeter chicane, have to live with consequences

-0.4 -0.3 -0.2 -0.1 0-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

1

10

210

310

410

510

610

particle energy [GeV]160 180 200 220 240ve

rt. p

arti

cle

po

siti

on

y [

mm

]

-20

-10

0

10 Laser spot size

Moritz Beckmann DESY-FLC ECFA 2013 11/ 17

Downstream Measurement

• Beamstrahlung correlates energy loss and depolarization⇒ Polarization correlated with particle position⇒ Selective measurement, measurement bias

-0.015 -0.01 -0.005 0

zlo

ng

. po

lari

zati

on

P

0.7

0.72

0.74

0.76

0.78

0.8

0.82

vert. particle position y [mm]-15 -10 -5 0

Laser spot size

• Detailed simulation of laser-bunch interaction at thedownstream polarimeter required

• For now: limited to measurable polarization

Moritz Beckmann DESY-FLC ECFA 2013 12/ 17

Spin Transport for Different Scenarios

0 10 20 30 40

zlo

ng

. po

lari

zati

on

P

0.79

0.795

0.8 ]-3

rela

tive

ch

ang

e [1

0

-10

-5

0

UP before collisionluminosity-weightedafter collisionDP DP measurable (0.1/0.2/0.5/1.0 mm)

-e

w/o collisions

with collisions

• �− • = 0.24 % (A. Hartin, LCWS 08: 0.22 %)

• Lattice designed such that ideally • = �(= �)(luminosity-weighted Pz should equal Pz at the DP)

• Beamstrahlung not taken into account, only T-BMT⇒ •−� = 0.1 % relative deviation

• Selective measurement: �−� = 0.2 %

Moritz Beckmann DESY-FLC ECFA 2013 13/ 17

Spin Transport for Different Scenarios

0 10 20 30 40

zlo

ng

. po

lari

zati

on

P

0.79

0.795

0.8 ]-3

rela

tive

ch

ang

e [1

0

-10

-5

0

UP before collisionluminosity-weightedafter collisionDP DP measurable (0.1/0.2/0.5/1.0 mm)

-e

w/o collisions

with collisions

• �− • = 0.24 % (A. Hartin, LCWS 08: 0.22%)

• Lattice designed such that ideally • = �(= �)(luminosity-weighted Pz should equal Pz at the DP)

• Beamstrahlung not taken into account, only T-BMT⇒ •−� = 0.1 % relative deviation

• Selective measurement: �−� = 0.2 %

Moritz Beckmann DESY-FLC ECFA 2013 13/ 17

Spin Transport for Different Scenarios

0 10 20 30 40

zlo

ng

. po

lari

zati

on

P

0.79

0.795

0.8 ]-3

rela

tive

ch

ang

e [1

0

-10

-5

0

UP before collisionluminosity-weightedafter collisionDP DP measurable (0.1/0.2/0.5/1.0 mm)

-e

w/o collisions

w/o beamstr.

with coll. (RDR)L ~TDR param.

1.5

• Simulation without beamstrahlung: • = � = ��− • = 0.18 % (A. Hartin, LCWS 08: 0.17%)

• TDR bunch-bunch luminosity (1.5 L):More beamstrahlung: •−� = 0.15 %Growing bias: �−� = 0.2 to 0.3 %⇒ Crucial to know laser spot size and position

Moritz Beckmann DESY-FLC ECFA 2013 14/ 17

Conclusion (1)

• In absence of beamstrahlung: downstream polarimetermeasures luminosity-weighted longitudinal polarization asforeseen by the lattice design X

• In presence of beamstrahlung, the measurement ofpolarization after collision already difficult assuming idealconditions: ≈ 0.1 % relative deviation → subtract (X)

• Worse for higher luminosities (TDR): 0.05 to 0.15 %relative deviation, precision limited by knowledge of laser spotsize? Possible problem, further examination necessary

Moritz Beckmann DESY-FLC ECFA 2013 15/ 17

Conclusion (2) and Outlook

• Need one polarimeter each in front of / behind the IP

Downstream polarimeter:• Assess collision effects• Direct access to luminosity-weighted longitudinal polarization

at least for small luminosities (little beamstrahlung)• Achievable precision for TDR beam parameters (stronger

beamstrahlung)?

Upstream polarimeter:• Measurement without interference from collision effects• Cross-check for downstream measurement

• Not in this talk: detector magnets, misalignments ofmagnets/ground motion

Moritz Beckmann DESY-FLC ECFA 2013 16/ 17

Thanks for your attention!

Thanks for support and useful discussions to:

• Daniel Schulte (CERN)

• David Sagan (Cornell University)

• Deepa Angal-Kalinin (Daresbury Lab.)

• Karsten Busser, Mathias Vogt, Nick Walker (DESY)

• Gudrid Moortgat-Pick (Hamburg University)

• Andrei Seryi (JAI)

• Kenneth Moffeit, Yuri Nosochkov, Michael Woods (SLAC)

• Jeff Smith (formerly SLAC)

• und many others...

Moritz Beckmann DESY-FLC ECFA 2013 17/ 17

Backup Slides

Moritz Beckmann DESY-FLC ECFA 2013 18/ 17

Spin Transport behind the IP

No net bending angle in extraction line

Moritz Beckmann DESY-FLC ECFA 2013 19/ 17

Lattice Design for Downstream Polarimeter

e e Pairs+ _

Beamstrahlung

Spin fan-out due to T-BMT precession:

∆Pz ∝ θx2

∆Plumz ≈ 1

4∆Pz ∝(

θx

2

)2

(SLAC-PUB-4692, SLAC-PUB-8397, θx � θy )

Idea: |R22(IP → DP)| = 0.5 ⇒ Plumz = PDP

z

Moritz Beckmann DESY-FLC ECFA 2013 20/ 17

Downstream Measurement

Longitudinal polarization vs. energy at the downstreampolarimeter, after collision

-0.3 -0.2 -0.1 0

zlo

ng

. po

lari

zati

on

P

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

particle energy [GeV]160 170 180 190 200 210 220 230 240 250

Moritz Beckmann DESY-FLC ECFA 2013 21/ 17

Polarimeter Chicane (upstream)

• Constant magnetic field• Dispersion (depending on beam energy): 1-11 cm• Measures every bunch per bunch train• Energy spectrum is polarization-dependent• Energy distribution → spatial distribution• Cherenkov gas detector counts electrons per channel

Moritz Beckmann DESY-FLC ECFA 2013 22/ 17

Polarimeter Chicane (downstream)

• Constant magnetic field• Dispersion (depending on beam energy): 1-11 cm• Measures 3 bunches per bunch train• Energy spectrum is polarization-dependent• Energy distribution → spatial distribution• Cherenkov gas detector counts electrons per channel

Moritz Beckmann DESY-FLC ECFA 2013 23/ 17

Bunch Rotation at the IP

• Collision under crossing angle of 14 mrad

• Maximize luminosity: rotate bunches using crab cavities

Moritz Beckmann DESY-FLC ECFA 2013 24/ 17