9
Free Energy and Chemical Thermodynamics Gibbs Free Energy and Chemical Potential PHYS 4050: Thermodynamics and Statistical Physics Prof. B. A. Foreman

Ch5 05 Gibbs and Chem Pot

Embed Size (px)

DESCRIPTION

123

Citation preview

Page 1: Ch5 05 Gibbs and Chem Pot

Free Energy and Chemical Thermodynamics

Gibbs Free Energy and Chemical Potential

PHYS 4050: Thermodynamics and Statistical PhysicsProf. B. A. Foreman

Page 2: Ch5 05 Gibbs and Chem Pot

Extensive quantities

β€’ Previously we defined an extensive quantity as one that grows in proportion to the size of the system

𝑆 ( πœ†π‘ˆ ,πœ†π‘‰ ,πœ†π‘ )=πœ†π‘† (π‘ˆ ,𝑉 ,𝑁 )β€’ In mathematical language, S is a

homogeneous function of degree one in U, V, and N

β€’ For example, entropy is usually an extensive quantity:

Page 3: Ch5 05 Gibbs and Chem Pot

Intensive quantities

β€’ We defined an intensive quantity as one that is independent of the size of the system

1𝑇≑( πœ•π‘†πœ•π‘ˆ )

𝑉 ,𝑁

,𝑃≑𝑇 ( πœ•π‘†πœ•π‘‰ )π‘ˆ ,𝑁

,πœ‡β‰‘βˆ’π‘‡ ( πœ•π‘†πœ•π‘ )π‘ˆ ,𝑉

β€’ In other words, they are homogeneous functions of degree zero in U, V, and N:

𝑇 ( πœ†π‘ˆ ,πœ†π‘‰ ,πœ†π‘ )=𝑇 (π‘ˆ ,𝑉 ,𝑁 )

β€’ Temperature, pressure, and chemical potential are all intensive:

Page 4: Ch5 05 Gibbs and Chem Pot

Thermodynamic potentials

β€’ The thermodynamic potentials are extensive too:

π»β‰‘π‘ˆ+𝑃𝑉 ,πΉβ‰‘π‘ˆβˆ’π‘‡π‘† ,πΊβ‰‘π‘ˆβˆ’π‘‡π‘†+𝑃𝑉

β€’ In terms of their natural independent variables, this means that

π‘ˆ (πœ†π‘† ,πœ†π‘‰ ,πœ†π‘ )=πœ†π‘ˆ (𝑆 ,𝑉 ,𝑁 )𝐻 (πœ†π‘† ,𝑃 ,πœ†π‘ )=πœ†π» (𝑆 ,𝑃 ,𝑁 )𝐹 (𝑇 ,πœ†π‘‰ ,πœ†π‘ )=πœ†πΉ (𝑇 ,𝑉 ,𝑁 )𝐺 (𝑇 ,𝑃 ,πœ†π‘ )=πœ†πΊ (𝑇 ,𝑃 ,𝑁 )

Page 5: Ch5 05 Gibbs and Chem Pot

Gibbs free energy

β€’ Let’s examine the consequences of

𝐺+π›Όπ‘πœ•πΊπœ•π‘

=𝐺+π›ΌπΊβ‡’π‘πœ•πΊπœ•π‘

=𝐺

β€’ Setting and expanding in a Taylor series for small , we get

𝑑𝐺=βˆ’π‘†π‘‘π‘‡+𝑉 𝑑𝑃+πœ‡π‘‘π‘β‡’πœ‡=( πœ•πΊπœ•π‘ )𝑇 ,𝑃

β€’ But this derivative is just the chemical potential:

Page 6: Ch5 05 Gibbs and Chem Pot

Gibbs energy and chemical potential

β€’ The fact that G is extensive therefore implies

𝐺=π‘πœ‡

β€’ In other words, the chemical potential is the Gibbs free energy per particle:

πœ‡=𝐺𝑁

β€’ If we extend this argument to systems with more than one type of particle, we get

𝐺=𝑁 1πœ‡1+𝑁2πœ‡2+β‹―=βˆ‘π‘–

𝑁 π‘–πœ‡π‘–

Page 7: Ch5 05 Gibbs and Chem Pot

Gibbs-Duhem relation

β€’ Since , small changes in must satisfy

𝑑𝐺=π‘π‘‘πœ‡+πœ‡π‘‘π‘=βˆ’π‘†π‘‘π‘‡ +𝑉 𝑑𝑃+πœ‡π‘‘π‘β€’ After cancelling from both sides, we obtain the Gibbs-Duhem

relation:βˆ’π‘†π‘‘π‘‡ +𝑉 π‘‘π‘ƒβˆ’π‘ π‘‘πœ‡=0

β€’ This tells us that the three intensive variables , , and cannot all be varied independently, because their differentials are related

Page 8: Ch5 05 Gibbs and Chem Pot

Isothermal changes in m

β€’ As an application of the Gibbs-Duhem relation, consider the special case of an isothermal process ():

𝑉 π‘‘π‘ƒβˆ’π‘ π‘‘πœ‡=0β‡’( πœ•πœ‡πœ•π‘ƒ )𝑇

=𝑉𝑁

β€’ In an ideal gas, this becomes

( πœ•πœ‡πœ•π‘ƒ )𝑇

=π‘˜π‘‡π‘ƒ

Page 9: Ch5 05 Gibbs and Chem Pot

Chemical potential

β€’ Integrating from to , we get

πœ‡ (𝑇 ,𝑃 )=πœ‡ (𝑇 ,π‘ƒβˆ˜ )+π‘˜π‘‡ ln (𝑃 /π‘ƒβˆ˜ )

β€’ This allows us to determine at a general pressure from the tabulated value at some reference pressure (usually 1 bar)

β€’ The value of can be obtained from tables of , since