CH2 Shallowfoundation (SEM2 200910)

Embed Size (px)

Citation preview

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    1/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 1

    2.0  SHALLOW FOUNDATION :

    2.1 

    General Concept

     

     A shallow foundation must :

    be safe against overall shear failure in the soil-  not undergo excessive settlement

     

    Nature of bearing capacity failure are : (as shown in Figure 2.1)

    -  general shear failure (for stiff clay or dense sand)-  local shear failure (for medium dense sand or clayey soil)

    punching shear failure(loose sand or soft clay)

    Figure 2.1 Nature of bearing capacity failure : (a) general shear (b)local shear (c) punching shear

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    2/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 2

      Vesic (1973) proposed a relationship for the bearing capacityfailure on sands in terms of relative density, Dr depth offoundation, Df  and B*, Figure 2.2

     

    Where :  L B BL B   2*   and B – width, L – length of foundation

    NOTE : L IS ALWAYS GREATER THAN B

     For square; B=L and for circular; B=L=Diameter of foundationand B* = B

    Figure 2.2 Modes of foundation failure in sand, (Vesic, 1973)

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    3/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 3

    2.2  Terzaghi’s Bearing Capacity 

     

    Terzaghi suggested for a continuous or strip foundation withfailure surface as in Figure 2.3

    Figure 2.3 Bearing capacity failure in soil under rough rigidcontinuous foundation

     Soil above the bottom of foundation is surcharge, q =  Df  

     The failure zone under the foundation is separated into three

    parts namely;-  triangular ACD under the foundation- 

    radial shear zones ADF and CDE with curves DE and DFas arcs of logarithmic spiral

    -  Rankine passive zones AFH and CEG

      CAD and  ACD are assume to equal friction angle, Ø

     Thus ultimate bearing capacity, qu for general shear failure can

    be expressed as :

    )..........(3.03.1

    ).........(4.03.1

    )........(5.0

     foundationcircular  BN qN cN q

     foundation square BN qN cN q

     foundation strip BN qN cN q

    qcu

    qcu

    qcu

     

     

     

     

     

     

     

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    4/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 4

    Where : c – cohesion of soil   - unit weight of soil

    q =  Df Nc, Nq, N    - bearing capacity factors

     And

    1cot1

    24cos2

    cot2

    tan2/4/32

     

      

     

    qc   N e

     N       

        

     

     

      

     

    245cos2   2

    tan2/4/32

     

       e N q  

      

     

        tan1cos2

    12  

     

      

     

      p K  N   

    where   p K  - passive pressure coefficient

     

    Table 2.1 summarizes values for  Nc, Nq, and N     

    Table 2.1 Terzaghi’s Bearing Capacity’s Factors 

    Ø Nc Nq N    Ø Nc  Nq  N

       

    01234567891011121314

    1516171819202122232425

    5.706.006.306.626.977.347.738.158.609.099.6110.1610.7611.4112.11

    12.8613.6814.6015.1216.5617.6918.9220.2721.7523.3625.13

    1.001.101.221.351.491.641.812.002.212.442.692.983.293.634.02

    4.454.925.456.046.707.448.269.1910.2311.4012.72

    0.000.010.040.060.100.140.200.270.350.440.560.690.851.041.26

    1.521.822.182.593.073.644.315.096.007.088.34

    262728293031323334353637383940

    41424344454647484950

    27.0929.2431.6134.2437.1640.4144.0448.0952.6457.7563.5370.0177.5085.9795.66

    106.81119.67134.58151.95172.28196.22224.55258.28298.71347.50

    14.2115.9017.8119.9822.4625.2828.5232.2336.5041.4447.1653.8061.5570.6181.27

    93.85108.75126.50147.74173.28204.19241.80287.85344.63415.14

    9.8411.6013.7016.1819.1322.6526.8731.9438.0445.4154.3665.2778.6195.03115.31

    140.51171.99211.56261.60325.34407.11512.84650.67831.991072.80

    From Kumbhojkar (1993)

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    5/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 5

      And ultimate bearing capacity, qu for local shear failure can beexpressed as :

    )..........('3.0''867.0

    ).........('4.0''867.0

    )........('5.0''32

     foundationcircular  BN qN cN q

     foundation square BN qN cN q

     foundation strip BN qN cN q

    qcu

    qcu

    qcu

     

     

     

     

     

     

     

    Where : N’c, N’q, N’    (see Table 2.2) are reduced bearing

    capacity factors can be calculated by using  N’c, N’q, N’    -

    bearing capacity factors with  

      

             tan

    3

    2tan'   1  

    Table 2.2 Terzaghi’s Modified Bearing Capacity’s Factors 

    Ø N’ c N’ q N’     Ø N’ c  N’ q  N’ 

       

    012345678

    9101112131415161718192021222324

    25

    5.705.906.106.306.516.746.977.227.47

    7.748.028.328.638.969.319.6710.0610.4710.9011.3611.8512.3712.9213.5114.14

    14.80

    1.001.071.141.221.301.391.491.591.70

    1.821.942.082.222.382.552.732.923.133.363.613.884.174.484.825.20

    5.60

    0.000.0050.020.040.0550.0740.100.1280.16

    0.200.240.300.350.420.480.570.670.760.881.031.121.351.551.741.97

    2.25

    262728293031323334

    35363738394041424344454647484950

    15.5316.3017.1318.0318.9920.0321.1622.3923.72

    25.1826.7728.5130.4332.5334.8737.4540.3343.5447.1351.1755.7360.9166.8073.5581.31

    6.056.547.077.668.319.039.8210.6911.67

    12.7513.9715.3216.8518.5620.5022.7025.2128.0631.3435.1139.4844.4550.4657.4165.60

    2.592.883.293.764.394.835.516.327.22

    8.359.4110.9012.7514.7117.2219.7522.5026.2530.4036.0041.7049.3059.2571.4585.75

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    6/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 6

    Example 2.1

    Given : A square foundation, 1.5m x 1.5m in plan viewSoil parameters :

    Ø’ = 20°, c’ = 15.2 kN/m2

    ,  =17.8 kN/m3

      Assume : FS = 4, general shear failure condition and Df = 1 mFind : Allowable gross load on the foundation

    Solution : ).........(4.0'3.1   foundation square BN qN  N cq qcu       

    For Ø’ = 20°, (Table 2.1); Nc = 17.69, Nq = 7.44, N = 3.64

    Thus

      )64.3)(5.1)(8.17)(4.0(44.78.17169.172.153.14.03.1      BN qN cN q qcu  2/52187.3843.13255.349   mkN   

     Allowable bearing capacity : 2/1304

    521mkN 

     FS 

    qq   uall     

    Thus total allowable gross load, Q

    kN  B AqQ all all    5.292)5.15.1(130130  2  

    Example 2.2

    Given : Repeat example 2.1 Assume : Local shear failure conditionSolution :

    ).........('4.0''867.0   foundation square BN qN cN q qcu       

    For Ø’ = 20°, (Table 2.2); Nc = 11.85, N

    q = 3.88, N

     = 1.12

      )12.1)(5.1)(8.17)(4.0(88.38.17185.112.15867.0'4.0'''867.0    

      BN qN  N cqqcu

      2/3.2370.121.692.156   mkN   

     Allowable load :2/3.59

    4

    3.237mkN 

     FS 

    qq   uall    ; kN  AqQ all all    4.133)5.15.1(3.59    

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    7/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 7

    2.3 

    Effect of Water Table on Bearing Capacity

     

     All equations mentioned before are based on the location of

    water table well below the foundation; if otherwise, somemodification should be made according to the location of thewater table, see Figure 2.4

    Figure 2.4 Modification of bearing capacity for water table

     Case I : 0 ≤ D1 ≤ Df  

    -  q’ (effective surcharge) = '21     D D    

    where :-  '  - effective unit weight = w sat          

    -   sa t   - saturated unit weight of soil

    -  w  - unit weight of water = 9.81kN/m3 or 62.4 lb/ft3 

    -  '     in the last term of the equation

     

    Case II : 0 ≤ d ≤ B 

    -  the value  f   Dq      

    ''            Bd   

     Case III : d ≥ B - 

    water has no effect on the qu 

    Note : the values of bearing capacity factors used strictly depending onwhether the condition is general or local shear failure.

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    8/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 8

    2.4  Factor of Safety, FS

      FS 

    qq   uall     , where :

    qall - gross allowable load-bearing capacity,- 

    qu  – gross ultimate bearing capacity,-  FS – factor of safety

      Values of FS against bearing capacity failure is 2.5 to 3.0.

     

    Net stress increase on soil = net ultimate bearing capacity/FS

      FS 

    qqq   unet all 

    )( , and :

     f  

    unet u

     Dq

    qqq

     

    )(   ;

    Where : qall(net)  – net allowable bearing capacityqu(net)  – net ultimate bearing capacity

     

    Procedure for FSshear 

    a.  Find developed cohesion,cd and angle of friction,Ød;

     

      

       

     shear 

     shear 

    d  FS 

    and  FS 

    cc

        

      tantan.............   1  

    )..........(3.03.1

    ).........(4.03.1

    )........(5.0

     foundationcircular  BN qN cN q

     foundation square BN qN cN q

     foundation strip BN qN cN q

    qcu

    qcu

    qcu

     

     

     

     

     

     

     

    b. Terzaghi’s equations become (with cd and Ød):

    )..........(3.03.1

    ).........(4.03.1

    )........(5.0

     foundationcircular  BN qN  N cq

     foundation square BN qN  N cq

     foundation strip BN qN  N cq

    qcd u

    qcd u

    qcd u

     

     

     

     

     

     

     

    With : Nc, Nq, N    - bearing capacity factors for Ød 

    c.  Thus, the net allowable bearing capacity :

         BN  N q N cqqq qcd all net all 2

    11)(    

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    9/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 9

    Example 2.3

    Using FS 

    qqq   unet all 

    )( ; and FS = 5; find net allowable load for the

    foundation in example 2.1 with qu = 521 kN/m

    2

    With qu = 521 kN/m2; q = 1(17.8) = 17.8 kN/m2 

    2

    )(   /64.1005

    8.17521mkN 

     FS 

    qqq   unet all   

     

    Hence Qall(net) = 100.64(1.5x1.5) = 226.4 kN

    Example 2.4

    Using Example 3.1, and Terzaghi’s equation

    ).........(4.03.1   foundation square BN qN cN q qcu      with FSshear = 1.5;

    Find net allowable load for the foundation

    For c=15.2 kN/m2, Ø = 20° and

     

     

     

       

     shear 

     shear 

     FS 

    and 

     FS 

    cc

        

      tantan.............   1  

    cd =2/13.10

    5.1

    2.15mkN 

     FS 

    c

     shear 

     

    Ød = tan-1[

     shear  FS 

     tan] = tan-1[

    5.1

    20tan] = 13.64°

    With :    BN  N q N cq qcd net all    4.013.1)(    

    From Table 2.1 : Ø=13.6° ; 2.1  N   ;   8.3q N   ;   12c N   (estimation)

    Hence :

    2

    )(

    /2202.128.490.158

    2.15.18.174.018.38.171213.103.1

    mkN 

    q net all 

     

      kN Q net all    4955.15.1220)(    

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    10/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 10

    2.5  The General Bearing Capacity Equation

     

    The need to address for rectangular shape foundation where :(0 1

          tan2

    245tan   e N q  

     

      

     

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    11/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 11

     

      

       

     B

     D F 

      f  

    cd 

    1tan4.01    

      

       

     B

     D F 

      f  

    qd 

    12 tansin1tan21        1d  F    

    NOTE : tan-1(Df  /B) is in radian 

    inclination2

    901  

     

      

     

       qici   F  F   

    2

    1  

      

      

       i F   

    Where : β  – inclination of load from vertical

     

    For undrained condition (Ø = 0)

    q F  F  N cq cd cscuu    

    cd cscuuunet    F  F  N cqqq   )(  

    Skempton’s : 

     

      

     

     

      

     

     L

     B

     B

     Dcq  f  

    unet    2.012.015)(  

    Table 2.3 Vesic’s Bearing Capacity Factors for General Equation (1973)

    Ø Nc Nq N      Nq / Nc  Tan Ø Ø Nc  Nq  N      Nq / Nc  Tan Ø012345678910111213141516171819202122232425

    5.145.385.635.906.196.496.817.167.537.928.358.809.289.8110.3710.9811.6312.3413.1013.9314.8315.8216.8818.0519.3220.72

    1.001.091.201.311.431.571.721.882.062.252.472.712.973.263.593.944.344.775.265.806.407.077.828.669.6010.66

    0.000.070.150.240.340.450.570.710.861.031.221.441.691.972.292.653.063.534.074.685.396.207.138.209.4410.88

    0.200.200.210.220.230.240.250.260.270.280.300.310.320.330.350.360.370.390.400.420.430.450.460.480.500.51

    0.000.020.030.050.070.090.110.120.140.160.180.190.210.230.250.270.290.310.320.340.360.380.400.420.450.47

    26272829303132333435363738394041424344454647484950

    22.2523.9425.8027.8630.1432.6735.4938.6442.1646.1250.5955.6361.3567.8775.3183.8693.71105.11118.37133.88152.10173.64199.26229.93266.89

    11.8513.2014.7216.4418.4020.6723.1826.0929.4433.3037.7542.9248.9355.9664.2073.9085.3899.02115.31134.88158.51187.21222.31265.51319.07

    12.5414.4716.7219.3422.4025.9930.2235.1941.0648.0356.3166.1978.0392.25109.41130.22155.55186.54224.64271.76330.35403.67496.01613.16762.89

    0.530.550.570.590.610.630.650.680.700.720.750.770.800.820.850.880.910.940.971.011.041.081.121.151.20

    0.490.510.530.550.580.600.620.650.670.700.730.750.780.810.840.870.900.930.971.001.041.071.111.151.19

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    12/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 12

    Example 2.5

    Figure 2.5

    Given : A square foundation (B x B), Figure 2.5, Q=150 kN.

    Df  = 0.7m, load is inclined at 20˚ from vertical, FS = 3.Use general bearing capacity factors

    Find : The width of foundation B

    )'2

    1( id  sqiqd qsqu   F  F  F  BN  F  F  F qN q       ;

      2/6.12187.0   mkN q    

    From Table 2.3 : For Ø’ =30°: Nq = 18.4, N   = 22.4, Nq / Nc = 0.61,Tan Ø = 0.58

      58.158.01tan1    B

     B

     L

     B F qs     ;   6.04.014.01  

     

      

     

     B

     B

     L

     B F  s 

     B B B

     D F 

      f  

    qd 

    202.01

    7.030sin158.021sin1tan21

      22      ;   1d  F    

    605.090

    201

    901

    22

     

      

     

     

      

     

       qici   F  F  ; 11.0

    30

    2011

    22

     

      

     

     

      

      

       i F   

    So

      B B

     B B

     F  F  F  BN  F  F  F qN q id  sqiqd qsqu

    3.1368.44

    2.22111.016.04.22182

    1605.0

    202.0158.14.186.12

    )'2

    1(

     

      

     

           

     B B B

     set thusq

    q   uall    43.489.14

    73.73150:

    3   2   

    By trial and error : B=1.3m

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    13/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 13

    2.6 

    Eccentrically Loaded Foundations

     

    Eccentrically loaded foundations give non-uniform distribution

    of pressure, Figure 2.6

    Figure 2.6 Eccentrically loaded foundations

    Eccentricity,Q

     M e   

     qmax and qmin is given by :

     

      

      B

    e

     BL

    Qq

      61max   and

     

      

      B

    e

     BL

    Qq

      61min  

      if e > B/6, and qmin becomes negative then :

    e B LQ

    q23

    4max

     

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    14/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 14

     Factor of safety against bearing capacity failure; effective areamethod, by Meyerhof (1953)a.

     

    Find effective dimensions of the dimensions- 

    the smaller of B’ and L’ is the width 

    effective width, B’ = B – 2e-  effective length, L’ = L - 

    if e is in the direction of L than L’ = L – 2e

    b. Find the ultimate bearing capacity, qu :

    id  sqiqd qsqcicd cscu   F  F  F  N  B F  F  F qN  F  F  F cN q        '2

    1'    

    -  use L’ and B’ to find  sqscs   F and  F  F   ..,  

    use B to find d qd cd    F and  F  F   ..,  

    c.  Total ultimate load, '''   ''  L Bq AqQ uuult     ; where A’ – effective

    area

    d. 

    Factor of safety,Q

    Q FS    ult   

    e. 

    Check FS against qmax ;max

    '

    q

    q FS    u  

    Example 2.6

    Given : A square foundation as shown in Figure 2.7. Using generalbearing capacity factors, (table 2.3)

    Figure 2.7

    Sand :

    0

    30/18  3

    c

    mkN   

     

    1.5m x 1.5 m

    0.7 m

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    15/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 15

    Find : Ultimate load, Qult,assume one way load eccentricity, e = 0.15m

    Solution : with c = 0;id  sqiqd qsqu   F  F  F  N  B F  F  F qN q        '

    2

    1'    

    Where :

    q = 0.7(18) = 12.6 kN/m2 

    for Ø = 30°, from Table 2.3 : Nq=18.4 and N =22.4

    B’ = 1.5 – 2(0.15) = 1.2mL’ = 1.5m 

    Thus values for general bering capacity equations : (using B’ and L’) 

    462.130tan5.1

    2.11tan

    '

    '1  

     

      

         

     L

     B F qs  

     

    135.15.1

    7.0289.01sin1tan21

      2

     B

     D F 

      f  

    qd        

    68.05.1

    2.14.01'

    '4.01    

      

      

      

       L

     B F  s   

    1d  F    

    2

    21

    /2.5495.1647.384

    168.04.222.118135.1462.14.186.12'

    mkN 

    q u

     

    Qult = q’ u X A’ = 549.2 X (1.5X1.2) = 988kN 

    Qall = 988/3 = 330kN with FS=3

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    16/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 16

    2.7  Load on strip footing

    Example 2.7 :

    Given : The strip footing shown below is to be constructed in auniform deposit of stiff clay and must support a wall that imposes aloading of 152 kN/m of wall length. Use general bearing capacityfactors.

    Find : The width of footing with FS of 3.

    Figure 2.8Solution :

    2

    2

    /9.722

    /8.1452

    ;

    ........(5.0

    mkN mkN qcwith

     foundation strip BN qN cN q

    u

    qcu

        

     

     And Ø=0°; from the Table 2.3 Nc = 5.14, Nq = 1.0 and N =0

    m

    mkN 

    mkN dthofwall requiredwi

    mkN mkN 

    q

    mkN  BmkN mmkN mkN q

    all 

    ult 

    15.1

    /4.132

    /0.152

    /4.1323

    /3.397

    /3.397)0)()(/82.18(5.0)0.1)(2.1)(/82.18()14.5)(/9.72(

    2

    22

    2332

     B required is 1.5 meter to be conservative

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    17/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 17

    2.8  Dimension of loaded square pad footing

    Example 2.8 :Soil deposit has the following ; =20.44 kN/m3, Ø=30°, c=38.3kN/m2 

    Square footing located 1.52 m below surface, carries 2670 kN andgroundwater is negligible. Use Terzaghi’s values, (Table 2.1).

    Find : The right dimension B. Use Terzaghi’s equation).........(4.03.1   foundation square BN qN cN q qcu       

    With Ø=30°; Nc=37.16, Nq=22.46, N =19.13

     Assume B=3 m;

    m B BmmkN 

    kN wall of  widthrequired 

    mkN mkN 

    q

    mkN mkN 

    mmkN mmkN mkN q

    all 

    ult 

    63.165.2/7.1005

    2670

    /7.10053

    /3017

    /3017/4696981850

    )13.19)(3)(/44.20(4.0)46.22)(52.1)(/44.20()16.37)(/3.38(3.1

    22

    2

    22

    22

    332

     

     Assume B=1 m;

    m B BmmkN 

    kN wall of  widthrequired 

    mkN mkN 

    q

    mkN mkN 

    mmkN mmkN mkN q

    all 

    ult 

    65.172.2/980

    2670

    /9803

    /2939/2939/3916981850

    )13.19)(1)(/44.20(4.0)46.22)(52.1)(/44.20()16.37)(/3.38(3.1

    22

    2

    22

    22

    332

     

     Assume B=2m;

    2670 kN

    γ = 20.44 kN/m3

    1.52m Ø=30˚ 

    c = 38.3 kN/m2 

    Figure 2.9

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    18/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 18

    m B BmmkN 

    kN wall of  widthrequired 

    mkN mkN 

    q

    mkN mkN 

    mmkN mmkN mkN q

    all 

    ult 

    67.180.2/954

    2670

    /9543

    /2861

    /2861/3136981850

    )13.19)(2)(/44.20(4.0)46.22)(52.1)(/44.20()16.37)(/3.38(3.1

    222

    22

    22

    332

     

     Assume B=1.8m;

    m B BmmkN 

    kN wall of  widthrequired 

    mkN mkN 

    q

    mkN mkN 

    mmkN mmkN mkN q

    all 

    ult 

    68.183.2/943

    2670

    /9433

    /2830

    /2830/2826981850

    )13.19)(8.1)(/44.20(4.0)46.22)(52.1)(/44.20()16.37)(/3.38(3.1

    22

    2

    22

    22

    332

      Assume B=1.7m;

    m B BmmkN 

    kN wall of  widthrequired 

    mkN mkN 

    q

    mkN mkN 

    mmkN mmkN mkN q

    all 

    ult 

    7.185.2/938

    2670

    /9383

    /2814

    /2814/2666981850

    )13.19)(7.1)(/44.20(4.0)46.22)(52.1)(/44.20()16.37)(/3.38(3.1

    22

    2

    22

    22

    332

     

    Therefore use 1.7m x 1.7m

    2.9 

    Contact Pressure and stability check.

     Can be computed by using flexural formula of :

     y

     y

     x

     x

     I 

     x M 

     I 

     y M 

     A

    Qq    

    Where :

    q – contact pressureQ – total axial vertical load

     A – area of footingMx, My  – total moment about respective x and y axesIx, Iy  – moment of inertia about respective x and y axes

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    19/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 19

    x, y – distance from centroid to the outer most point atwhich the contact pressure is computed along respective x andy axes.

    Example 2.9

     A pad footing with dimension of 1.52 x 1.52m acted upon by the loadof 222.4kN. Estimate soil contact pressure and FS against bearingcapacity.

    Given :1.52m by 1.52m square footing; P=222.4kN;  so il   =18.85kN/m

    concrete  =24 kN/m3; qu = 143.64 kN/m

    Find :a.

     

    Soil contact pressureb. FS against bearing capacity pressure

    Solution :

    a. y

     y

     x

     x

     I 

     x M 

     I 

     y M 

     A

    Qq   ; Mx=My=0; since load on centroid

    Total load calculation, Q :

    Column load, P = 222.4kNWeight of footing base= (1.52m)(1.52m)0.31m(24kN/m3) = 17.19 kNWeight of footing pedestal= (0.14m)(0.14m)(0.91m)(24kN/m3) = 0.43 kNWeight of backfill soil

    222.4KN

    0.14m20.91m

    1.22m

    0.31m1.52m

    Figure 2.10

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    20/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 20

    = [(1.52m)(1.52m)-(0.14m)(0.14m)](0.91m) x 18.85kN/m3

    = 39.3kN

    Q = 222.4 + 17.19 + 0.43 + 39.3 = 279.32kN

     Area, A = 1.52mx1.52m = 2.31m2

     Soil contact pressure or Stress, q = Q/A = 120.9 kN/m2 

    b.2

    2

    /82.712

    /64.143

    2

    4.02.1

    mkN mkN q

    c

     BN  N  DcN q

    u

    q f  cult 

         

     

     Assuming cohesive soil has : Ø=0° and c>0; thus :Nc=5.14, Nq=1.0, N =0, Df =1.22m

    85.39.120

    98.465

    /98.465

    0)0.1)(22.1(85.18)14.5)(82.71(2.14.02.1

    2

    q

    q FS 

    mkN 

     BN  N  DcN q

    ult 

    q f  cult       

     

    Since FS > 3.0; thus ok.

    Example 2.10

    Draw soil contact pressure forfooting in Figure 2.11

    Conversion to SI unitP=222.4 kN;H=88.96 kN;M=81.35kN.m;

    W=88.96 kNDf =1.22m;B=2.29m (7.5ft);L=1.52m (5ft)

    Figure 2.11

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    21/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 21

    Given : 2.29m by 1.52m rectangular footingFind : Contact pressure and soil pressure diagram

    Solution :

    Using flexural formula; y

     y

     x

     x

     I  x M 

     I  y M 

     AQq    

    Q = P + W = 222.4 kN + 88.96 kN = 311.36 kN. A = 2.29m x 1.52m = 3.48 m2;Mx=0; My=88.96(1.22)+81.35=189.88kN.m (Moment about point C)

    x = 2.29/2 = 1.145m; 43

    52.112

    )29.2(52.1m

    mm I  y    

    22

    22

    42

    /53.53...../47.232

    /143/47.8952.1

    )145.1)(88.189(

    48.3

    36.311

    mkN qand mkN q

    mkN mkN m

    mmkN 

    m

    kN q

    left right   

     

    Take ΣV = 0 and ΣMc = 0 will produce :

    ΣV = 0 :  )........(36.311)52.1(2

    ......0))((2

     AkN mqd 

    and W  P  Ld q

     

      

     

     

      

       

    ΣMc = 0 : see Figure 2.12 (b) and (c)

    03

    ))((2

    ))((    

      

     

     

      

     

      d  x Ld 

    qS  H  M   

    2/46.254.,36.311)52.1)(61.1(2

    :)(int.61.1079.10351.35653.10835.81

    .....032

    29.236.31122.196.88.35.81

    mkN qkN mmq

     Ao substituemd d 

     Bd m

    mkN mkN 

     

      

     

     

      

     

     

    Figure 2.12 (a) and (b)

    1.61m

    254.46kN/m2

    2.29m2.29m

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    22/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 22

    Example 2.11 Checking stability on shallow foundation

    Given : A 6 ft x 6 ft footing as shown; load P=60kips; weight ofconcrete footing including pedestal + base pad, W1=9.3kips; backfill,W2=11.2kips; horizontal load = 4kips; qall for soil = 3.0 kips/ft

    2.

    Find :1.

     

    Contact pressure and soil pressure diagram.2.

     

    Shear and moment at section A-A (in the Figure E3.14)3.

     

    FS against sliding if coefficient of friction, δ = 0.40 

    4. 

    FS against overturning.

    Solution :

    1. y

     y

     x

     x

     I 

     x M 

     I 

     y M 

     A

    Qq    

    Q=P+W1+W2=60+9.3+11.2=80.5kips A=6ftx6ft=36ft2 My=4kipsx4.5ft=18kip-ft (about point C)x=6ft/2=3ft

    Iy=6ft(6ft)3

     /12=108ft4

    ; Mx=0; Mxy/Ix=0

    22

    42  /50.0/24.2

    108

    )3(.18

    36

    5.80 ft kip ft kips

     ft 

     ft  ft kip

     ft 

    kips

     I 

     x M 

     I 

     y M 

     A

    Qq

     y

     y

     x

     x  

    So : qright = 2.74 kips/ft2 < 3.0 kips/ft2 ; OK

    qleft = 1.74 kips/ft2 < 3.0 kips/ft2 ; OK

    Figure 2.13 

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    23/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 23

    2. ΔFDG and ΔEDH are similar triangles; so 

      ft kips ft kips ft 

    kips A Aat  Moment 

    kipskipskips

     ft  ft kip ft  ft  ft kips ft  A Aat Shear 

     ft kip DE  ft 

     ft  DE  ft  FG

     ft 

     ft  ft 

     EH  ft kips DF  FG

     EH 

     DF 

     DE 

    .7.3925.253.22

    25.293.31:...

    46.3453.293.31

    )6)(/375.0)(25.2()6)(/375.074.2(25.2:...

    /375.0;..6

    25.2

    0.1;...6

    25.22

    5.1

    2

    6

    ;.../0.174.174.2;.....

    32

    2

    212

    2

    2

     

      

     

     

    3.

    05.84

    )40.0(2.113.960

    .........

    kips

    kipskipskips

     forces Horizontal eandsoil betweenbas frictionof  t coefficienload vertical Total  sliding against  FS 

     

    4. 4.13)5.4(4

    )2/6(5.80

    .

    .Re..  

     ft kips

     ft kips

    moment Turning 

    moment  sisting  g overturninagainst  FS   

    Pressure diagram

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    24/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 24

    2.10 Settlement of shallow foundationFoundation settlement under load can be classified according to twomajor types :

    (a) 

    immediate or elastic settlement, Se (b)  consolidation settlement, Sc 

    Elastic settlement, Se takes place immediately during or afterconstruction of structure.

    Consolidation settlement, Sc is time dependent comprises of twophases; namely, primary and secondary consolidation settlement.

    2.10.1 Elastic settlement of foundations on saturated clay

    Elastic settlement of foundations on saturated clay is given by Janbuet al., (1956) using the equation :

     s

    e E 

     Bq A AS    021  

    where :

     A 1 is a function of H/B and L/B and A 2 is a function of Df  /B All parameters of H, B and Df  (with L into the paper) are asshown in Figure 2.14.

    Figure 2.14 : Parameters

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    25/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 25

    Figure 2.15 : A 2 Versus Df  /B

    Figure 2.16 : A 1 Versus H/B and L/B

    2.10.2 Elastic settlement of foundations on sandy soil: use ofstrain influence factor

    Schmertmann, (1978) proposed that the elastic settlement in sandysoil as :

      2

    0

    21

     z 

     s

     z e   z 

     E 

     I qqC C S   

    where :

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    26/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 26

    Iz  – strain influence factor

    C1  – correction factor due to depth =

    qq

    q5.01  

    C2  – correction factor due to soil creep =  

     

     

     

    1.0

    log2.01  yearsintime

     

    q - stress at the level of foundation (due to loading + self

    weight of footing + weight of soil above footing)

     f   Dq      

    Figure 2.17 : Calculation of elastic settlement using strain influencefactor

    The variation of Iz with depth below the footing for square orcircular are as below :

    Iz = 0.1 at z = 0Iz = 0.5 at z = z1 = 0.5BIz = 0 at z = z2 = 2B

    Footing with L/B ≥ 10 (rectangular footing) : 

    Iz = 0.2 at z = 0

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    27/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 27

    Iz = 0.5 at z = z1 = BIz = 0 at z = z2 = 4B

    2.10.3 Range of material parameters

    Elastic parameters such as E  s  and μ s  in Table 2.4 can be used if thereal laboratory test results not available.

    Table 2.4 : Elastic parameters of various soils

    Type of soil Modulus of Elasticity,Es 

    (MN/m2

    )

    Poisson’s ratio, μs 

    Loose sand 10.5 – 24.0 0.20 – 0.40Medium dense sand 17.25 – 27.60 0.25 – 0.40

    Dense sand 34.50 – 55.20 0.30 – 0.45Silty sand 10.35 – 17.25 0.20 – 0.40

    Sand and gravel 69.00 – 172.50 0.15 – 0.35Soft clay 4.1 – 20.7

    0.20 – 0.50Medium clay 20.7 – 41.4Stiff clay 41.4 – 96.6

    2.10.4 Consolidation settlement

    (a)  Primary consolidation, Sc 

    Many methods were developed in estimating the value ofconsolidation settlement, Sc.

    Due to simplicity only chart based on Newmarks (1942), Figure 2.18will be used in estimating the consolidation settlement.

    Primary consolidation, Sc calculated as :

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    28/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 28

    00

    log1   p

     p

    e

     H C S  cc

     

      

     

     

    where : Cc  – compression index (given)

    H – thickness of clay layere0  – initial void ratio (given)p = p0 + Δp, final pressure 

    p0  – overburden pressure Δp =4(Ip)q0  – net consolidation pressure at mid-height of

    clay layer

    Ip  – Influence factor (from Figure 2.18)

    q0  – net stress increase

    Figure 2.18 : Chart for determining stresses below corners of rigidand isotropic.

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    29/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 29

    Example 2.7

    Given :

    Figure 2.19

     A foundation to be constructed as in Figure 2.19. The base of thefoundation is 3m by 6m, and it exerts a total load of 5400 kN, whichinclude all self weight. The initial void ratio, e0 is 1.38 andcompression index, Cc is 0.68.

    Required :

    Expected primary consolidation settlement of clay layer.

    Solution :

    p0 = 19.83(200 - 198) + (19.83 – 9.81)(198 - 192) + (17.1 – 9.81)(192 – 185.6)/2 = 123.1 kN/m2 

    Weight of excavation = 19.83(200 - 198) + (19.83 – 9.81)(198 – 195.5) = 64.7kN/m2 

      20

    /3.2355.19519881.983.1919820083.1963

    5400

    ,

    mkN mm

    kN 

    excavationof  weight  pressureload qincrease stress Net 

     

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    30/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 30

    By dividing the base into 4 equal size of 1.5m by 3.0m :

    mz = 1.5m nz = 3.0m

    mmm

    m z    7.62

    6.1850.1925.195  

     

    224.07.6

    5.1

    m

    mm ; 448.0

    7.6

    0.3

    m

    mn  

    From Figure 2.18, the influence coefficient is 0.04

    Therefore ;   22 /6.37/3.23504.04   mkN mkN  p    

    Final pressure, p = p0 + Δp = 123.1 + 37.6 = 160.7 kN/m2.

    Therefore; mmkN 

    mkN m

     p

     p

    e

     H C S  cc   212.0

    /1.123

    /7.160log

    38.11

    4.668.0log

    1   2

    2

    00

     

      

      

      

     

     

      

     

     

    (b)  secondary consolidation

    Secondary settlement, Ss is computed from the following calculation(U.S. Department of the Navy, 1971)

     

     

     

     

     p

     s s

    t  H C S    log   

    where :

    Ss  – secondary compression settlement

    Cα  – coefficient of secondary compression, can be determinedfrom Figure

    3.26H – thickness of clay layer that is consideredts  – time for which settlement is requiredtp  – time to completion of primary consolidation

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    31/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 31

    Figure 2.20 : Value of Cα 

    2.11  Allowable bearing pressure in sand based onsettlement consideration.

     

    Bowles (1977) proposed a correlation of the net allowablebearing pressure for foundations with SPT (N-values).

      The following equations are used :

      m B for S 

     F  N mkN q d all net    22.14.25

    16.19)/(   2)(    

      

       

     And

      m B for S 

     F  B

     B N mkN q d all net    22.1

    4.2528.3

    128.398.11)/(

    2

    2

    )(    

      

      

      

         

    Where :

    Fd  – depth factor = 33.133.01    

      

     

     B

     D f    

    S – tolerable settlement, in mm.

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    32/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 32

    Example 2.8

    Given:

     A shallow square footing for a column is to be constructed.Design load is 1000 kN. The foundation soil is sand. The SPTnumbers from field exploration as shown in the table.

     Assume that the footing must be 1.5m deep, the tolerablesettlement as 25.4mm and the size is > 1.22m.

    Required :

    (a) The exact size of the footing (b) safety factor for foundation

    Solution :

    Navg = (7+8+11+11+13+10+9+10+12)/9=10With S=25.4mm and N=10

      d d all net    F  B

     B F 

     B

     BmkN q

    22

    2

    )(28.3

    128.38.119

    4.25

    4.25

    28.3

    128.31098.11)/(  

     

      

       

     

      

      

      

         

    33.133.01    

      

     

     B

     D F 

      f  

    d   

    By trial and error (set the table for calculation)

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    33/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 33

    From the table it is seen that the appropriate B=2.4

    Setting general equation and equation for net ultimate with c=0(for sandy soil) :

     f  

    unet u

     Dq

    qqq

     

    )(  ; id  sqiqd qsqcicd cscu   F  F  F  BN  F  F  F qN  F  F  F cN q      

    2

    1  

      q F  F  F  BN  F  F  F qN qqq id  sqiqd qsqult net u          

    2

    For N=10; friction angle of Ø=34˚ is considered (from table onSI)

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    34/35

     BFC 4043

    AKS & PM I R AZI ZAN SEM 2 200910 34

    With no inclination so Fqi=Fγi=1.0From table 2.3 Nq=29.44, Nγ=41.06

    So for a tolerable settlement of 25.4mm, the SF required iscalculated as : SF=Qnet(u)/Q= 10,322kN/1000kN = 10.3 whichis OK, therefore most design controlled by tolerable criterion.

  • 8/20/2019 CH2 Shallowfoundation (SEM2 200910)

    35/35

     BFC 4043