18
[SHIVOK SP212] February 20, 2016 Page 1 CH 28 Magnetic Fields I. What Produces Magnetic Field? A. One way that magnetic fields are produced is to use moving electrically charged particles, such as a current in a wire, to make an electromagnet. The current produces a magnetic field that is utilizable. B. The other way to produce a magnetic field is by means of elementary particles such as electrons, because these particles have an intrinsic magnetic field around them. 1. The magnetic fields of the electrons in certain materials add together to give a net magnetic field around the material. Such addition is the reason why a permanent magnet, has a permanent magnetic field. 2. In other materials, the magnetic fields of the electrons cancel out, giving no net magnetic field surrounding the material.

CH 28 Structured Notes 2015 - USNA 28 Structured Notes with...electrically charged particles, such as a current in a wire, to make an electromagnet. The current produces a magnetic

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

 [SHIVOK SP212] February 20, 2016 

 

 Page1

CH 28 

MagneticFields

I. WhatProducesMagneticField?

A. Onewaythatmagneticfieldsareproducedistousemovingelectricallychargedparticles,suchasacurrentinawire,tomakeanelectromagnet.Thecurrentproducesamagneticfieldthatisutilizable.

 

B. Theotherwaytoproduceamagneticfieldisbymeansofelementaryparticlessuchaselectrons,becausetheseparticleshaveanintrinsicmagneticfieldaroundthem.

1. Themagneticfieldsoftheelectronsincertainmaterialsaddtogethertogiveanetmagneticfieldaroundthematerial.Suchadditionisthereasonwhyapermanentmagnet,hasapermanentmagneticfield.

2. Inothermaterials,themagneticfieldsoftheelectronscancelout,givingnonetmagneticfieldsurroundingthematerial.

 

 [SHIVOK SP212] February 20, 2016 

 

 Page2

II. TheDefinitionofBfield:

A. Wecandefineamagneticfield,B,byfiringachargedparticlethroughthepointatwhichistobedefined,usingvariousdirectionsandspeedsfortheparticleanddeterminingtheforcethatactsontheparticleatthatpoint.Bisthendefinedtobeavectorquantitythatisdirectedalongthezero‐forceaxis.

B. Themagneticforceonthechargedparticle,FB,isdefinedtobe:

 

 

Hereqisthechargeoftheparticle,visitsvelocity,andBthemagneticfieldintheregion.

C. Themagnitudeofthisforceisthen: 

 

HereisthesmallestanglebetweenvectorsvandB. 

D. FindingtheMagneticForceonaParticle:

 

 

1. TheforceFBactingonachargedparticlemovingwithvelocityvthroughamagneticFieldBisALWAYSperpendiculartobothvandB.

 

 [SHIVOK SP212] February 20, 2016 

 

 Page3

E. TheSIunitforBthatfollowsisnewtonpercoulomb‐meterpersecond.Forconvenience,thisiscalledthetesla(T):

 

 

1. Anearlier(non‐SI)unitforBisthegauss(G),and

2. Table

F. Sampleproblem:

1. Analphaparticletravelsatavelocity ofmagnitude550m/sthrough

auniformmagneticfield ofmagnitude0.045T.(Analphaparticlehasa

chargeof+3.2×10‐19Candamassof6.6×10‐27kg.)Theanglebetween

and is52°.Whatisthemagnitudeof(a)theforce actingontheparticle

duetothefieldand(b)theaccelerationoftheparticledueto ?(c)Doesthespeedoftheparticleincrease,decrease,orremainthesame?

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page4

Sample problem continued: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page5

III. MagneticFieldLines:

A. ThedirectionofthetangenttoamagneticfieldlineatanypointgivesthedirectionofBatthatpoint.

B. ThespacingofthelinesrepresentsthemagnitudeofB—themagneticfieldisstrongerwherethelinesareclosertogether,andconversely.

 

 

C. Oppositemagneticpolesattracteachother,andlikemagneticpolesrepeleachother.

D. NosuchthingasaMagneticMonopoleEveryNorthPolehasanassociatedSouthPole!

E. FieldlinesemanatefromtheNorthPoleandterminateintheSouthPole.

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page6

IV. CrossedFields,DiscoveryofanElectron:

A. Figure

 

B. WhenthetwofieldsinFig.28‐7areadjustedsothatthetwodeflectingforcesactingonthechargedparticlecancel,wehave

 

C. Thus,thecrossedfieldsallowustomeasurethespeedofthechargedparticlespassingthroughthem.

D. Thedeflectionofachargedparticle,movingthroughanelectricfield,E,betweentwoplates,atthefarendoftheplates(inthepreviousproblem)is

 

Here,vistheparticle’sspeed,mitsmass,qitscharge,andListhelengthoftheplates.

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page7

V. CrossedFields,TheHallEffect:

A. AHallpotentialdifferenceVisassociatedwiththeelectricfieldacrossstripwidthd,andthemagnitudeofthatpotentialdifferenceisV=Ed.Whentheelectricandmagneticforcesareinbalance(Fig.28‐

8b), wherevdisthedriftspeed.But,

1. WhereJisthecurrentdensity,Athecross‐sectionalarea,etheelectroniccharge,andnthenumberofchargesperunitvolume.

B. Therefore, here,l=(A/d),thethicknessofthestrip.

1. Fig.28‐8Astripofcoppercarryingacurrentiisimmersedinamagneticfield.(a)Thesituationimmediatelyafterthemagneticfieldisturnedon.Thecurvedpaththatwillthenbetakenbyanelectronisshown.(b)Thesituationatequilibrium,whichquicklyfollows.Notethatnegativechargespileupontherightsideofthestrip,leavinguncompensatedpositivechargesontheleft.Thus,theleftsideisatahigherpotentialthantherightside.(c)Forthesamecurrentdirection,ifthechargecarrierswerepositivelycharged,theywouldpileupontherightside,andtherightsidewouldbeatthehigherpotential.

 [SHIVOK SP212] February 20, 2016 

 

 Page8

VI. ACirculatingChargedParticle:

A. Consideraparticleofchargemagnitude|q|andmassmmovingperpendiculartoauniformmagneticfieldB,atspeedv.

B. Themagneticforcecontinuouslydeflectstheparticle,andsinceBandvarealwaysperpendiculartoeachother,thisdeflectioncausestheparticletofollowacircularpath.

C. Themagneticforceactingontheparticlehasamagnitudeof|q|vB. 

D. Foruniformcircularmotion 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page9

E. Diagram

1. Fig.28‐10Electronscirculatinginachambercontaininggasatlowpressure(theirpathistheglowingcircle).Auniformmagneticfield,B,pointingdirectlyoutoftheplaneofthepage,fillsthechamber.NotetheradiallydirectedmagneticforceF

B;forcircularmotiontooccur,F

Bmustpoint

towardthecenterofthecircle,(CourtesyJohnLeP.Webb,SussexUniversity,England)

 

 

VII. HelicalPaths:

A. Fig.28‐11(a)Achargedparticlemovesinauniformmagneticfield,theparticle’svelocityvmakingananglefwiththefielddirection.(b)Theparticlefollowsahelicalpathofradiusrandpitchp.(c)Achargedparticlespiralinginanonuniformmagneticfield.(Theparticlecanbecometrapped,spiralingbackandforthbetweenthestrongfieldregionsateitherend.)Notethatthemagneticforcevectorsattheleftandrightsideshaveacomponentpointingtowardthecenterofthefigure.

 

 [SHIVOK SP212] February 20, 2016 

 

  Page10

 

B. Thevelocityvector,v,ofsuchaparticleresolvedintotwocomponents,oneparalleltoandoneperpendiculartoit:

 

C. Theparallelcomponentdeterminesthepitchpofthehelix(thedistancebetweenadjacentturns(Fig.28‐11b)).Theperpendicularcomponentdeterminestheradiusofthehelix.

 

Pitch =                                                       and    Radius =  

 

 

D. Themorecloselyspacedfieldlinesattheleftandrightsidesindicatethatthemagneticfieldisstrongerthere.Whenthefieldatanendisstrongenough,theparticle“reflects”fromthatend.Iftheparticlereflectsfrombothends,itissaidtobetrappedinamagneticbottle.

 

 [SHIVOK SP212] February 20, 2016 

 

  Page11

VIII. SampleproblemsofChargedParticlesinMagneticFields

A. CrossedFields:

1. Anelectricfieldof1.50kV/mandaperpendicularmagneticfieldof0.400Tactonamovingelectrontoproducenonetforce.Whatistheelectron'sspeed?

 

 

 

 

 

 

 

B. TheHallEffect:  

1. Astripofcopper150μmthickand4.5mmwideisplacedinauniform

magneticfield ofmagnitude0.65T,with perpendiculartothestrip.Acurrenti=23AisthensentthroughthestripsuchthataHallpotentialdifferenceVappearsacrossthewidthofthestrip.CalculateV.(Thenumberofchargecarriersperunitvolumeforcopperis8.47×1028electrons/m3.)

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page12

C. ACirculatingChargedParticle: 

1. AnelectronisacceleratedfromrestthroughpotentialdifferenceVandthenentersaregionofuniformmagneticfield,whereitundergoesuniformcircularmotion.Figure28‐37givestheradiusrofthatmotionversusV1/2.Theverticalaxis

scaleissetbyrs=3.0mm,andthehorizontalaxisscaleissetby .Whatisthemagnitudeofthemagneticfield?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page13

IX. MagneticForceonaCurrent‐CarryingWire:

A. AforceactsonacurrentcarryingwireinaBfield:

 

 

B. ConsideralengthLofthewireinthefigure.Alltheconductionelectronsinthissectionofwirewilldriftpastplanexxinatimet=L/vd.

 

 [SHIVOK SP212] February 20, 2016 

 

  Page14

C. Thus,inthattimeachargewillpassthroughthatplanethatisgivenby

 

 

 

 

 

 

 

HereLisalengthvectorthathasmagnitudeLandisdirectedalongthewiresegmentinthedirectionofthe(conventional)current.

D. Ifawireisnotstraightorthefieldisnotuniform,wecanimaginethewirebrokenupintosmallstraightsegments.Theforceonthewireasawholeisthenthevectorsumofalltheforcesonthesegmentsthatmakeitup.Inthedifferentiallimit,wecanwrite

 

 

andwecanfindtheresultantforceonanygivenarrangementofcurrentsbyintegratingEq.28‐28overthatarrangement.

 

E. Sampleproblem:

1. Awire1.80mlongcarriesacurrentof13.0Aandmakesanangleof35.0°withauniformmagneticfieldofmagnitudeB=1.50T.Calculatethemagneticforceonthewire.

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page15

X. TorqueonaCurrentLoop:

A. Considernow,aloopofwirewithcurrentflowingthroughit:

 

B. ThetwomagneticforcesFand–Fproduceatorqueontheloop,tendingtorotateitaboutitscentralaxis.

C. Todefinetheorientationoftheloopinthemagneticfield,weuseanormalvectornthatisperpendiculartotheplaneoftheloop.Figure28‐19bshowsaright‐handruleforfindingthedirectionofn.InFig.28‐19c,thenormalvectoroftheloopisshownatanarbitraryangletothedirectionofthemagneticfield.

 

 

RHR for µ  

 [SHIVOK SP212] February 20, 2016 

 

  Page16

D. Forside2themagnitudeoftheforceactingonthissideisF2=ibB

sin(90°‐)=ibBcos=F4.F

2andF

4canceloutexactly.

E. ForcesF1andF

3havethecommonmagnitudeiaB.AsFig.28‐19c

shows,thesetwoforcesdonotsharethesamelineofaction;sotheyproduceanettorque.

 

F. ForNloops,whenA=ab,theareaoftheloop,thetotaltorqueis:

 

G. SampleProblem

1. Anelectronmovesinacircleofradiusr=5.29×10‐11mwithspeed2.19×106m/s.Treatthecircularpathasacurrentloopwithaconstantcurrentequaltotheratiooftheelectron'schargemagnitudetotheperiodofthemotion.IfthecircleliesinauniformmagneticfieldofmagnitudeB=7.10mT,whatisthemaximumpossiblemagnitudeofthetorqueproducedontheloopbythefield?

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page17

XI. TheMagneticDipoleMoment,:

A. Definition:

Here,Nisthenumberofturnsinthecoil,iisthecurrentthroughthecoil,andAistheareaenclosedbyeachturnofthecoil.

B. Direction:Thedirectionofisthatofthenormalvectortotheplaneofthecoil.

 

C. Thedefinitionoftorquecanberewrittenas: 

 

 

 

D. Justasintheelectriccase,themagneticdipoleinanexternalmagneticfieldhasanenergythatdependsonthedipole’sorientationinthefield:

 

 

E. Amagneticdipolehasitslowestenergy(‐Bcos0=‐B)whenitsdipolemomentislinedupwiththemagneticfield.Ithasitshighestenergy(‐Bcos180°=+B)whenisdirectedoppositethefield.

F. Fromthebelowequations,onecanseethattheunitofcanbethejoulepertesla(J/T),ortheampere–squaremeter.

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page18

 

G. SampleProblem:

1. Amagneticdipolewithadipolemomentofmagnitude0.020J/Tisreleasedfromrestinauniformmagneticfieldofmagnitude52mT.Therotationofthedipoleduetothemagneticforceonitisunimpeded.Whenthedipolerotatesthroughtheorientationwhereitsdipolemomentisalignedwiththemagneticfield,itskineticenergyis0.80mJ.(a)Whatistheinitialanglebetweenthedipolemomentandthemagneticfield?(b)Whatistheanglewhenthedipoleisnext(momentarily)atrest?