61
21 Electric Charge and Electric Field

Ch 21

Embed Size (px)

DESCRIPTION

Physics 72

Citation preview

Page 1: Ch 21

21 Electric  Charge  and  Electric  Field

Page 2: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objectives1. Apply  the  concepts  of  the  dichotomy,  conservation and  quantization of  electric  charge

2. Given  the  initial/final  charge  distribution,  calculate  the  final/initial  charge  distribution  using  conservation  principles

2

Page 3: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

3

Page 4: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Two  positive  charges  or  two  negative  charges  repel each  other.

A  positive  charge  and  a  negative  charge  attract each  other.  

+ +

+ –

––

+

positive  charge

negative  chargeBenjamin  Franklin

4

Page 5: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Electric  Charge  and  the  Structure  of  Matter  

5

Page 6: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Electric  charge  is  conserved  and  quantized.

1.  The  algebraic  sum  of  all  the  electric  charges  in  any  closed  system  is  constant.

2.  Every  observable amount  of  electric  charge  is  always  an  integer  multiple  of  the  electron/proton  charge.  We  say  that  charge  is  quantized.  

charging  process

+  – +  – +  – – +e.  g.  rubbing

where  n is  an  integer

6

Page 7: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objectives1. Predict  charge  distributions,  and  the  resulting  attraction  or  repulsion,  in  a  system  of  charged  insulators and  conductors

2. Outline  the  process  of  charging

7

Page 8: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Conductors permit  the  easy  movement  of  charge  through  them,  while  insulators do  not.  

8

Page 9: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Charging  by  Induction

In  a  metallic  conductor  the  mobile  charges  are  always  negative electrons.In  ionic  solutions and  ionized  gases,  both  positive  and  negative  charges  are  mobile.  

9

Page 10: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Charging  by  Induction

10

Page 11: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Charging  by  Induction

11

Page 12: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Electric  Forces  on  Uncharged  Objects

Polarization is  the  slight  shifting  of  charge  within  the  molecules  of  the  neutral  insulator  

Hence  a  charged  object  of  either  sign  exerts  an  attractive force  on  an  uncharged  object.  A  CHARGED  body  can  exert  forces  on  objects  that  are  UNCHARGED.

12

Page 13: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Example:Two  neutral  conducting  pop  cans  are  touching  each  other.  A  positively  charged  balloon  is  brought  near  one  of  the  cans  as  shown  below.  The  cans  are  separated  while  the  balloon  is  nearby,  as  shown.  After  the  balloon  is  removed  the  cans  are  brought  back  together.  When  touching  again,  can  X  is  ____.

A.  positively  charged B.  negatively  charged

C.  neutral D.  impossible  to  tell13

Page 14: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

A  negatively  charged  balloon  is  brought  near  a  neutral  conducting  sphere  as  shown  below.  As  it  approaches,  charge  within  the  sphere  will  distribute  itself  in  a  very  specific  manner.  Which  one  of  the  diagrams  below  properly  depicts  the  distribution  of  charge  in  the  sphere?

14

Example:

Page 15: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

A  positively  charged  balloon  is  brought  near  a  neutral  conducting  sphere  as  shown  below.  While  the  balloon  is  near,  the  sphere  is  touched  (grounded).

At  this  point,  there  is  a  movement  of  electrons.  Electrons  move  ____  .

A. into  the  sphere  from  the  ground  (hand)  B. out  of  the  sphere  into  the  ground  (hand)C. into  the  sphere  from  the  balloonD. out  of  the  sphere  into  the  balloon

15

Example:

Page 16: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Consider  three  identical  conducting  cubes,  A,  B,  and  C  as  shown.  Cube  A  and  Cube  B  were  made  to  touch  each  other,  after  electrostatic  equilibrium  is  reached,  they  were  separated.  Cube  A  was  then  made  to  touch  Cube  C.  After  electrostatic  equilibrium  is  reached,  what  are  the  final  charges  on  each  cube?

16

Example:

Page 17: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

You  have  two  lightweight  metal  spheres,  each  hanging  from  an  insulating  nylon  thread.  One  of  the  spheres  has  a  net  negative  charge,  while   the  other  sphere  has  no  net  charge.  

1. If  the  spheres  are  close  together  but  do  not  touch,  will  they  A. attract  each  other,  B. repel  each  other,  or  C. exert  no  force  on  each  other?  

2. You  now  allow  the  two  spheres  to  touch.  Once  they  have  touched,  will   the  two  spheres  

A. attract  each  other,  B. repel  each  other,  or  C. exert  no  force  on  each  other?  

Exercise  1:

17

Page 18: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objective1. Calculate  the  net  electric  force on  a  point  charge  exerted  by  a  system  of  point  charges

18

Page 19: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Charles  Augustin  de  Coulomb  (1736–1806)  Coulomb’s  Law

19

Page 20: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21:  Force  between  two  point  chargesCoulomb’s  Law

Where:

SI  unit  of  electric  charge  :  coulomb  (C)SI  unit  of  force:  newton  (N)SI  unit  of  length  :  meter  (m)

20

Page 21: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

q1 q2 +x–axis

+y–axis

a

What  are  the  magnitude  and  direction  of  the  force  exerted  by  q1 on  q2?  By  q2 on  q1?

21

Example:

Page 22: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

q1 q2 +x–axis

+y–axis

a

What  are  the  magnitude  and  direction  of  the  force  exerted  by  q1 on  q2?  By  q2 on  q1?

22

Example:

Page 23: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

q1 q2 +x–axis

+y–axis

a

What  are  the  magnitude  and  direction  of  the  net  force  exerted  by  q2 and  q3 on  q1?By  q1 and  q2 on  q3?

a

q3

23

Example:

Page 24: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Five  equal  charges  Q are  equally  spaced  on  a  semicircle  of  radius  R as  shown.  Find  the  force  on  a  charge  q located  at  the  center  of  the  semicircle.

24

Example:

Page 25: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

When  two  electrically  charged  particles  in  empty  space  interact,  how  does  each  one  know  that  the  other  is  there?  What  goes  on  in  the  space  between  them  to  communicate  the  effect  of  each  one  to  the  other?  

25

Page 26: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objectives1. Describe  the  electric  field  due  to  a  point  charge  quantitatively  and  qualitatively  

2. Establish  the  relationship  between  the  electric  field  and  the  electric  force  on  a  test  charge

3. Predict  the  trajectory of  a  massive  point  charge  in  a  uniform  electric  field

26

Page 27: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Electric  Field

The  electric  field  is  the  intermediarythrough  which  A communicates  its  presence  to  B (qo).

The  electric  force  on  a  charged  body  is  exerted  by  the  electric  field created  by  other  charged  bodies.  

27

Page 28: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Electric  Field

electric  force  Fo experienced  by  a  test  charge  qo at  a  certain  point,  divided  by  the  charge  qo

SI  unit  of  electric  field  magnitude  :  N/C

(for  point  charge  only) 28

Page 29: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Electric  Field  of  a  Point  Charge

(magnitude  only)

(magnitude  +  direction) 29

𝑬 = 𝒌𝒒𝒓𝟐

𝑬 = 𝒌𝒒𝒓𝟐 𝒓'

Page 30: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21What  are  the  magnitude  and  direction  of  the  net  electric  field  at  point  P?

a

P

q1 q2 +x–axis

+y–axis

aa

q3

30

Example:If  a  test  charge  qo is  placed  at  point  P,  what  are  the  magnitude  and  direction  of  the  electric  force  it  experiences?

Page 31: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

A  square  has  equal  negative  charges  at  three  of  its  corners,  as  shown.  The  direction  of  the  electric  field  at  point  P  is

P1

2

3

45 31

Example:

Page 32: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

A  proton  is  moving  horizontally  to  the  right  in  an  electric  field  that  points  vertically  upward.  The  electric  force  on  the  proton  is  

A. zero.B. upward.C. downward.D. to  the  left.E. to  the  right.

q  =  +e+

32

Example:

Page 33: Ch 21

An  electron  is  moving  horizontally  to  the  right  in  an  electric  field  that  points  vertically  upward.  The  electric  force  on  the  proton  is  

A. zero.B. upward.C. downward.D. to  the  left.E. to  the  right.

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

q  =  –e–

33

Example:

Page 34: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

1. A  negative  point  charge  moves  along  a  straight-­line  path  directly  toward  a  stationary  positive  point  charge.  Which  aspect/s  of  the  electric  force  on  the  negative  point  charge  will   remain  constant  as  it  moves?

A. magnitudeB. directionC. both magnitude  and  directionD. neither  magnitude  nor  direction

2. A  negative  point  charge  moves  along  a  circular  orbit  around  a  positive  point  charge.  Which  aspect/s  of  the  electric  force  on  the  negative  point  charge  will  remain  constant  as  it  moves?  

A. magnitudeB. directionC. both  magnitude  and  directionD. neither  magnitude  nor  direction 34

Example:

Page 35: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objective1. Evaluate  the  electric  field  at  a  point  in  space  due  to  a  system  of  arbitrary  charge  distributions

35

Page 36: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Superposition  of  Electric  Fields

Components:

36

Page 37: Ch 21

𝐸 =  ?

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Point  charge Charge  distribution

q Qr

PP

At  point  P,  

(simple) (complicated)

37

𝑬 = 𝒌𝒒𝒓𝟐𝒓'

Page 38: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Q

P

q1

q2q3

qn

qo

(Superposition  of  forces)

(Superposition  of  E–fields)38

Page 39: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Charge  distributions  • linear  charge  distribution    (1-­D)λ (Greek  letter lambda):  linear  charge  density  (charge  per  unit  length.  measured  in  C/m)

Examples:

• surface  charge  distribution  (2-­D)σ (Greek  letter sigma):  surface  charge  density  (charge  per  unit  area:  measured  in  C/m2)

• volume  charge  distribution  (3-­D)ρ (Greek  letter rho):  volume  charge  density  (charge  per  unit  volume:  measured  in  C/m3)

39

Page 40: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

40

Page 41: Ch 21

𝑬 =𝟐𝒌 +𝝀𝒙 =

𝟐𝒌𝝀𝒙

𝑬 =𝟐𝒌 +𝝀𝒙 =

𝟐𝒌𝝀𝒙

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Line  chargeFor  an  infinite  line  of  charge:

+𝝀

Px

At  point  P:Magnitude:

Direction:  +x-­direction

At  point  R:Magnitude:

Direction:  –x-­direction

x

y

R x

41

Page 42: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

For  an  infinite  line  of  charge:

−𝝀

At  point  P:Magnitude:

Direction:  –x-­direction

At  point  R:Magnitude:

Direction:  +x-­direction

x

y

42

Line  charge

𝑬 =𝟐𝒌 −𝝀𝒙 =

𝟐𝒌𝝀𝒙

𝑬 =𝟐𝒌 −𝝀𝒙 =

𝟐𝒌𝝀𝒙

PxR x

Page 43: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

43

Page 44: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

44

Page 45: Ch 21

𝑬 =+𝝈𝟐𝝐𝟎

=𝝈𝟐𝝐𝟎

𝑬 =+𝝈𝟐𝝐𝟎

=𝝈𝟐𝝐𝟎

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

+𝝈

Px

At  point  P:Magnitude:

Direction:  +x-­direction

At  point  R:Magnitude:

Direction:  –x-­direction

x

y

R x

45

For  an  infinite  plane  sheet  of  charge:

Plane  charge

Page 46: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

−𝝈

At  point  P:Magnitude:

Direction:  –x-­direction

At  point  R:Magnitude:

Direction:  +x-­direction

x

y

46

𝑬 =−𝝈𝟐𝝐𝟎

=𝝈𝟐𝝐𝟎

𝑬 =−𝝈𝟐𝝐𝟎

=𝝈𝟐𝝐𝟎

PxR x

For  an  infinite  plane  sheet  of  charge:

Plane  charge

Page 47: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Consider three charged infinite planes that are parallel to each other asshown in the figure. The rightmost plane has uniform charge density +σwhile the rest have uniform charge density –σ. Calculate the magnitude ofthe electric field at the four regions I to IV.

–σ –σ +σ

I II III IV

L L

47

Example:

Page 48: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

An infinite line of charge with linear charge density λ was placed a distanced on top of an infinite sheet with surface charge density σ as shown. Whatis the net electric field at point P at a distance of 2d from the line?

48

Example:

Page 49: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Three infinite sheets of uniform surface charge densities of +σ, +σ and –σ are arranged as shown. Which of the regions 1, 2, 3 and 4 has/have netelectric fields pointing in the +x-­direction?

49

Exercise  2:

Page 50: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objective1. Given  the  electric  field  lines,  deduce  the  electric  field  vectors  and  nature  of  electric  field  sources

50

Page 51: Ch 21

• Field  lines  never intersect

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21An  electric  field  line  is  an  imaginary  line  or  curve  drawn  through  a  region  of  space.  

• Its  tangent  at  any  point  is  in  the  direction  of  the  electric–field  vector  at  that  point  

• It  is  not the  same  as  trajectories.  

At any particular point, the electric field has aunique direction.

51

Page 52: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

52

Page 53: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Suppose  the  electric  field  lines  in  a  region  of  space  are  straight  lines.  If  a  charged  particle  is  released  from  rest  in  that  region,  will  the  trajectory  of  the  particle  be  along  a  field  line?  

A. YESB. NO

53

Example:

Page 54: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Given   the   charges   +Q and   –2Q,   which   of   the   following  diagram   shows   a   correct   representation   of   the   electric   field  lines?

B.

C.

D.

A.

54

Example:

Page 55: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

Objective1. Discuss  the  motion  of  an  electric  dipole  in  a  uniform electric  field

55

Page 56: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21What  is  an  Electric  Dipole?

• pair of  point  charges  with  equal  magnitude  and  opposite  sign  • (a  positive  charge  +q and  a  negative  charge  –q)  separated  by  a  distance  d  

:  electric  dipole  moment:  directed  from  (–) to  (+)

+ –+q –q

d

p =  qd (magnitude)SI  units  of  p :  C  •  m 56

Page 57: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Force and  Torque on  an  Electric  Dipole  

In  a  uniform  external  electric  field  :

:

:

Magnitude  of  torque:

Direction  of  torque:

X (into  the  page)

Torque  

57

Page 58: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

(Magnitude of  torque)with  

(torque in  vector form)

58

Force and  Torque on  an  Electric  Dipole  

Page 59: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

59

Page 60: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21Potential  Energy  of  an  Electric  Dipole  

(potential  energy of  a  dipole)

60

Page 61: Ch 21

Electric  ChargeConductors,  Insulators,  and  Induced  ChargesCoulomb’s  LawElectric  Field  and  Electric  ForcesElectric  Field  CalculationsElectric  Field  LinesElectric  Dipoles

21

61