18
[SHIVOK SP211] August 26, 2015 Page 1 CH 2 Motion along a Straight Line I. Motion A. We find moving objects all around us. B. The study of motion is called _________________________; it is the classification and comparison of motions. 1. Examples: a) The Earth orbits around the Sun b) A roadway moves with Earth’s rotation 2. In this chapter, we will study motion that takes place in a straight line. 3. Forces cause motion. We will find out, as a result of application of force, if the objects speed up, slow down, or maintain the same rate. (For this chapter, we discuss only the motion itself, not the forces that cause it.) 4. The moving object here will be considered as a particle. If we deal with a stiff, extended object, we will assume that all particles on the body move in the same fashion. We will study the motion of a particle, which will represent the entire body. a) A particle is either: (1) A point‐like object (such as an electron) (2) Or an object that moves such that each part travels in the same direction at the same rate (no rotation or stretching) 5. Example of motion in straight line

CH 2 Motion along a Straight Line - USNA€¦ · CH 2 Motion along a Straight Line ... same direction at the same rate (no rotation or stretching) 5. ... –24 m/s2 2. Over a short

  • Upload
    hahanh

  • View
    224

  • Download
    3

Embed Size (px)

Citation preview

 [SHIVOK SP211] August 26, 2015 

 

 Page1

CH 2 

Motion along a Straight Line 

I. Motion

A. Wefindmovingobjectsallaroundus.

B. Thestudyofmotioniscalled_________________________;itistheclassificationandcomparisonofmotions.

1. Examples:

a) TheEarthorbitsaroundtheSun

b) AroadwaymoveswithEarth’srotation

2. Inthischapter,wewillstudymotionthattakesplaceinastraightline.

3. Forcescausemotion.Wewillfindout,asaresultofapplicationofforce,iftheobjectsspeedup,slowdown,ormaintainthesamerate.(Forthischapter,wediscussonlythemotionitself,nottheforcesthatcauseit.)

4. Themovingobjectherewillbeconsideredasaparticle.Ifwedealwithastiff,extendedobject,wewillassumethatallparticlesonthebodymoveinthesamefashion.Wewillstudythemotionofaparticle,whichwillrepresenttheentirebody.

a) Aparticleiseither:

(1) Apoint‐likeobject(suchasanelectron)

(2) Oranobjectthatmovessuchthateachparttravelsinthesamedirectionatthesamerate(norotationorstretching)

5. Exampleofmotioninstraightline  

 [SHIVOK SP211] August 26, 2015 

 

 Page2

II. Positionanddisplacement

A. Thelocationofanobjectisusuallygivenintermsofastandardreferencepoint,calledtheorigin.Thepositivedirectionistakentobethedirectionwherethecoordinatesareincreasing,andthenegativedirectionasthatwherethecoordinatesaredecreasing.

 

B. Achangeinthecoordinatesofthepositionofthebodydescribesthe_______________ofthebody:∆xisthechangeinx,(finalposition)–(initialposition)

C. Forexample,ifthex‐coordinateofabodychangesfromx1tox

2,thenthe

displacement,

 

D. Displacementisa________________________quantity.Thatis,aquantitythathasbothmagnitudeanddirectioninformation.

 

E. Anobject’sdisplacementisx=‐4mmeansthattheobjecthasmovedtowardsdecreasingx‐axisby4m.Thedirectionofmotion,here,istowarddecreasingx.

 

F. Theactualdistancecoveredisirrelevant 

G. Exampleproblem:

1. Herearethreepairsofinitialandfinalpositions,respectively,alongthex‐axis.Whichpairsgiveanegativedisplacement?

(a) ‐3m, +5m  ; (b) ‐3m, ‐7m ; (c) 7m, ‐3m 

 

 

 [SHIVOK SP211] August 26, 2015 

 

 Page3

III. AverageVelocityandAverageSpeed

A. Acommonwaytodescribethemotionofanobjectistoshowagraphofthepositionasafunctionoftime.

 

 

 

 

B. Averagevelocity,orvavg,isdefinedasthedisplacementoverthetime

duration. 

 

 

1. Averagevelocityhasunitsof(distance)/(time)

2. Meterspersecond,m/s                          

C. Theaveragevelocityhasthesamesignasthedisplacement 

 [SHIVOK SP211] August 26, 2015 

 

 Page4

D. Themagnitudeoftheslopeofthex‐tgraphgivestheaveragevelocity

 

1. Here,theaveragevelocityis: 

 

E. AverageSpeed

1. Averagespeedistheratioofthetotaldistancetraveledtothetotaltimeduration.Itisascalarquantity,anddoesnotcarryanysenseofdirection.

 

 

2. Averagespeedisalwayspositive(nodirection)                           

F. ExampleProblems:

1.

 

 

 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

 Page5

 

2.  

 

 

 

 

 

 

 

 

3.  

 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

 Page6

4.

 

 

 

 

 

Note: Notice savg is not always the same as the magnitude of vavg. 

IV. InstantaneousVelocityandSpeed 

A. Theinstantaneousvelocityofaparticleataparticularinstantisthevelocityoftheparticleatthatinstant.

B. Obtainedfromaveragevelocitybyshrinking∆t;heretapproachesalimitingvalue:

1. v,theinstantaneousvelocity,istheslopeofthetangentoftheposition‐timegraphatthatparticularinstantoftime.

C. Velocityisavectorquantity(units(distance)/(time))andhaswithitanassociatedsenseofdirection.Thesignofthevelocityrepresentsitsdirection.

D. Speedisthemagnitudeof(instantaneous)velocity 

 [SHIVOK SP211] August 26, 2015 

 

 Page7

E. Sampleproblem:

1.

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

 Page8

V. Averageandinstantaccelerations

A. Averageaccelerationisthechangeofvelocityoverthechangeoftime.

B. Assuch, 

 

                               

1. Herethevelocityisv1attimet

1,andthevelocityisv

2attimet

2.

C. Theinstantaneousaccelerationisdefinedas: 

 

1. Slopeoftangentlineofthevelocityvs.timegraph                               

D. Intermsofthepositionfunction,theaccelerationcanbedefinedas:

 

 

                               

E. TheSIunitsforaccelerationare________________. 

F. Ifaparticlehasthesamesignforvelocityandacceleration,thenthatparticleisspeedingup.

G. Conversely,ifaparticlehasoppositesignsforthevelocityandacceleration,thentheparticleisslowingdown.

H. Ourbodiesoftenreacttoaccelerationsbutnottovelocities.Afastcaroftendoesnotbothertherider,butasuddenbrakeisfeltstronglybytherider.Thisiscommoninamusementcarrides,wheretherideschangevelocitiesquicklytothrilltheriders.

 

 [SHIVOK SP211] August 26, 2015 

 

 Page9

I. ThemagnitudeofaccelerationfallingneartheEarth’ssurfaceis

9.8m/s2,andisoftenreferredtoasg.

1. Onarollercoaster,youmightexperiencebriefaccelerationsofupto3g,whichis(3)*(9.8m/s2),orabout29m/s2,whichisathrill.Anun‐trainedindividualcanblackoutbetween4and6g,particularlyifthisispulledsuddenly.

 

J. Sampleproblems:

1. Overashortintervalneartimet=0thecoordinateofanautomobileinmetersisgivenbyx(t)=27t–4.0t3,wheretisinseconds.Attheendof1.0stheaccelerationoftheautois:A)27m/s2B)4.0m/s2C)–4.0m/s2D)–12m/s2E)–24m/s2

 

 

 

 

 

2. Overashortinterval,startingattimet=0,thecoordinateofanautomobileinmetersisgivenbyx(t)=27t–4.0t3,wheretisinseconds.Themagnitudesoftheinitial(att=0)velocityandaccelerationoftheautorespectivelyare:A) 0; 12 m/s2

B) 0; 24 m/s2

C) 27 m/s; 0 D) 27 m/s; 12 m/s2 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

  Page10

VI. Constantacceleration

A. Whentheaccelerationisconstant,itsaverageandinstantaneousvaluesarethesame…so:

 

 means that                                         Eqn (2‐11) 1. Here,velocityatt=0isv

o.

B. Similarly,,whichmeansthat

C. Alsovavg=½(vo+v)=>vavg=½vo+½vvavg=vo+½at 

D. ThusX=Xo+(vo+½at)tEqn(2‐15) 

E. EliminatingtfromtheaboveboxedEquationsgivesus

Eqn(2‐16)

F. Eliminatingafromequations2‐11and2‐15givesusoreliminatingvogivesusEqn’s2‐17and2‐18listedinthetablebelow.Proofscanbeshowninmyofficeifyouareinterested.

 Can only be used for CONSTANT 

Acceleration! 

 [SHIVOK SP211] August 26, 2015 

 

  Page11

G. Thefirsttwoequationscanbeobtainedbyintegratingaconstantaccelerationsoneverneedtobememorized.

 

 

 

 

 

 

 

1. Theotheradditionalusefulformsallcomefromalgebrarearrangementsofthefirsttwoequationsdependingontheknownandmissingvalues.

 

a) NowunderVF=VO+at.Squarebothsides.YougetVF2=(VO+at)(VO+at)whichusingthefoilmethod=

b) VO2+2aVOt+a2t2.NowifIfactoroutthe2anoticeIgetVF2=VO2+2a(VOt+(1/2)at2).Solookaboutisn’tthepartinparenthesisjustDX.Sodon’tyouhaveVF2=VO2+2a(DX).Hmmmnomemorizationrequiredhereeither.Equation2‐16learned.Threeof5done.

c) Nowlookatthefirstequationifwearenotgivena,wecanrearrangethefirstequationforathensubstitutethatequationintothesecondequationlikethis.

d) a=(Vf‐Vo)/tXf‐Xo=VOt+(1/2)t2(Vf‐Vo)/t.Thenoneofthet’scancelsoIhaveVot+(1/2)Vft‐(1/2)Vot.SoifIfactorout½IgetXf‐Xo=½(Vo+Vf)t.Fourthequationlearned.Nothingmemorized.

e) FINALLYifIgobacktothefirstequationandassumetheydidnotgivemeVo,IrearrangeforVo=Vf‐at.

f) SubstitutethatintothefourthequationandIgetXf‐Xo=½(Vf‐at+Vf)t,thusfactorout…Xf‐Xo=Vft‐(1/2)at2.Fifthequationlearned.Nothingmemorized.

 

 [SHIVOK SP211] August 26, 2015 

 

  Page12

H. SampleProblems:

1. Howfardoesacartravelin6sifitsinitialvelocityis2m/sanditsaccelerationis2m/s2intheforwarddirection?

 

A) 12 m B) 14 m C) 24 m D) 36 m E) 48 m 

 

 

2. Adragracingcarstartsfromrestatt=0andmovesalongastraightlinewithvelocitygivenbyv=bt2,wherebisaconstant.Theexpressionforthedistancetraveledbythiscarfromitspositionatt=0is? 

 

 

 

 

 

3. Thefollowingequationsgivethepositionofx(t)ofaparticleinfoursituations.Forwhichofthesescenariosdothe“big5equations”apply?

a) ( ) 3 4x t t

 

b) 3 2( ) 5 4 6x t t t

 

c) 2

2 4( )x t

t t

 

d) 2( ) 5 3x t t

 

 [SHIVOK SP211] August 26, 2015 

 

  Page13

VII. Free‐FallAcceleration

A. InthiscaseobjectsclosetotheEarth’ssurfacefalltowardstheEarth’ssurfacewithnoexternalforcesactingonthemexceptfortheirweight.

B. Usetheconstantaccelerationmodelwith“a”replacedby“‐g”,whereg=9.8m/s2formotionclosetotheEarth’ssurface.NOTICEthatgdoesnotequal‐9.8m/s2BUTa=‐g!

1. Interestingwebsitewhichwillgiveyoutheactualgvalueforyourgeographiclocationis:http://www.physicsclassroom.com/class/circles/u6l3e.cfm.

a) ThevalueofgforAnnapolis,MDis9.80171m/s2.

b) Interestingly,thevalueofgforHonnolulu,HIis9.78452m/s2.

C. Inaddition,itisimportanttonotetheaccelerationisnotalwaysaconstant=9.80m/s2(thisisonlytrueinFree‐fallacceleration).

D. Invacuum,afeatherandanapplewillfallatthesamerate.Youcanseethisforyourselfat:

http://www.youtube.com/watch?v=_XJcZ‐KoL9o 

E. FreefallQuantitative:

1. ChoosepositiveYasupwards(a=‐g.AgainNotegisnon‐negative!) 

 

 

 

 

 

 

 

 

Vx =  

 

X = 

 

V2x =  

Vy = 

 

Y = 

 

V2y =  

Monday’s Lesson Review 

 [SHIVOK SP211] August 26, 2015 

 

  Page14

VIII. Exampleproblems: 

A. Boyontopofbuildingreleasesfromrestarock,whichstrikestheground3.5seclatter.Howtallisthebuilding?Whatisthevelocityatthebottompicosecondsbeforeitstruck?

 

Solution:        Y =                                      

                         

h =  

 

 

 

V= 

 

 

 

 

 

 

B. Abatterhitstheball40mverticallyupward.Whatisaccelerationbefore,at,andafterballreachesthemaximumheight?Whatisvelocityatthemaximumheight?Whatistheinitialandfinalvelocity?Howlongistheballinflight?

Solution: 

 

 

 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

  Page15

C. Astoneisthrownverticallyupwardwithaninitialspeedof19.5m/s.Itwillrisetoamaximumheightof:A) 4.9 m B) 9.8 m C) 19.4 m D) 38.8 m E) none of these 

Solution:         

 

 

 

 

D. Aprojectileisshotverticallyupwardwithagiveninitialvelocity.Itreachesamaximumheightof100m.If,onasecondshot,theinitialvelocityisdoubledthentheprojectilewillreachamaximumheightof:A) 70.7 m B) 141.4 m C) 200 m D) 241 m E) 400 m 

Solution:         

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

  Page16

E. Anelevatorismovingupwardwithconstantacceleration.Thedashedcurveshowsthepositionyoftheceilingoftheelevatorasafunctionofthetimet.Attheinstantindicatedbythedot,aboltbreakslooseanddropsfromtheceiling.Whichcurvebestrepresentsthepositionoftheboltasafunctionoftime?

A) A B) B C) C D) D E) E

 [SHIVOK SP211] August 26, 2015 

 

  Page17

IX. GraphicalIntegrationinMotionAnalysis

A. Integratingacceleration:

1. Givenagraphofanobject'saccelerationaversustimet,wecanintegratetofindvelocity.

 

a) TheFundamentalTheoremofCalculusgives:

 

 

2. FromyourknowledgeoftheendofCalcIandfromCalcII,youshouldrememberthatiftheaxesofthegrapharetheitemsbehindtheintegralsymbol,thatanothergroupofwordsforintegralis________________________________.

a) Thusthedefiniteintegralontherightcanbeevaluatedfromagraph:

 

 

 

 

B. Integratingvelocity:

1. Givenagraphofanobject'svelocityvversustimet,wecanintegratetofindposition.

a) TheFundamentalTheoremofCalculusgives: 

 

b) Similarlyasabove,thedefiniteintegralontherightcanbeevaluatedfromagraph:

 

 

 

 [SHIVOK SP211] August 26, 2015 

 

  Page18

C. Example:

1. AparticularsalamanderofthegenusHydromantescapturespreybylaunchingitstongueasaprojectile:Theskeletalpartofthetongueisshotforward,unfoldingtherestofthetongue,untiltheouterportionlandsontheprey,stickingtoit.TheFigurebelowshowstheaccelerationmagnitudeaversustimetfortheaccelerationphaseofthelaunchinatypicalsituation.

Theindicatedaccelerationsare 22 400 /a m s and 2

1 100 /a m s .Whatisthe

outwardspeedofthetongueattheendoftheaccelerationphase?