7
 \ A I M Paper NO 73 1 82 DECK HEATING EFFECTS DUE TO VTOL JET EXHAUST IMPINGEMENT b y 0 T . CASTELLS and R. B . MISHLER General Electric Company Cincinnati, Ohio r? E w AlAAlSAE gth Pronulsion Conference LAS VEGAS, NEVADA / NOVEMBER 57,1973 M 73 572 First publication rights reserved by American Institute of Aeronautics and Astronautics. 1290 Avenue of the Americas, New York, N. Y. 10019. Abstracts may be published without permi ssion if credit i s gi ven to author and to AIA A. (Pr ice: A lA A Member 1.50. Nonmember 2.00) Note: This paper available at AlAA New York office for six months; thereafter, photoprint copies are available a t photocopy prices from AlAA Library, 750 3rd Avenue, New York, New York 10017

CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

  • Upload
    mojicap

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 1/7

\

AIM

Paper

NO 73

1

82

DECK HEATING EF F EC TS DUE TO VTOL

JET

EXHAUST IMPINGEMENT

by

0

T .

CASTELLS and R . B. MISHLER

G ener a l

Elec t r ic

Company

Cincinnat i , Ohio

r?

E

w

A l A A l S A E gth

Pronulsion Conference

LA S VEGAS, NEVADA /

NOVEMBER

57,1973

M 73 572

First publication rights reserved b y American Institute of Aeronautics and Astronautics.

1290 Avenue of the Americas, New York,

N.

Y. 10019. Abstracts may be published without

permission if credit i s given to author and to AIA A. (Price: A lA A Member 1.50. Nonmember 2.00)

Note: This paper available at AlAA New York office for six months;

thereafter, photoprint copies

are avai lable a t

photocopy

pr ices

from

AlAA Library,

750

3rd Avenue, New York, New York 10017

Page 2: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 2/7

DECK HEATI NG EFFECTS DUE TO VTOL J ET EXHAUST l MPI NGFNENT

OT. Castel l s

R.B. M s hl er

Gener al El ect r i c Company

Ai r craf t Engi ne Cr oup

Ci nci nnati , Ohi o 45215

-

Abstract

Opti mumsupersoni c VTOL ai r cr af t r equi r e hi gh

speci f i c t hr ust engi nes.

vel oci t y and t emper atur e w t h i ncreased heati ng

pot ent i al . The pr esent study i dent i f i es deck

t emperat ure profi l e(s) f or var i ous j et. exhaust

conf i gur at i ons on a deck.

operat i onal modes on t he deck t emper at ure ar e eval -

uated.

w t h j et conf i gur ati on, are found to be t he pri n-

ci pal var i abl es af f ecti ng deck peak t emperat ur e.

Var i ous met hods o f r educi ng peak deck t emper at ure

wer e

consi der ed. Saf e operat i onal usage

of

aug-

ment ed t urboj ets f or supersoni c VTOL ai r craf t ,

appear s t o be f easi bl e w t h mnor constr ai nt s.

Thi s resul t s i n hi gh j et

The ef f ects of var i ous

Run up t i me and cycl e condi t i ons, al ong

Nomencl at ur e

As = Nozzl e exi t area

CN = Adj usted nozzl e coeff i ci ent used i n the

cal cul at i on of J et vel oci ty decay

Cyp

=

Nozzl e vel oci t y coef f i ci ent of non- ci rcul ar

nozzl es

CvSTD= Vel oci t y coef f i ci ent of

a

ci rcul ar nozz l e

Dg = Equi val ent nozzl e exi t di ameter

Dh = Hydr aul i c di ameter

Dhe = J 4nAs/ nozzl e per i meter

g = Accel er ati on of gr avi t y (32. 2 f t l sec )

h = Heat t r ansf er coef f i ci ent

K Thermal conduct i vi t y

I , = I:harac t4vi :; t 5.r i cn~t h or det em ni ng

Mg = Nozzl e exi t Mach number ( f ul l y expanded)

NU = Nussel t Number = hL/ K

PR =

Pr andt l Number

Re = Reynol ds Number

TR = Recover y (adi abati c wal l ) t emper ature

TTR

=

TTN

=

Nozz1. e exhaust t otal t emperat ure

T~w=

VI VB

=

V/ Vj et

=

rat i o of the cent er l i ne vel oci t y

2

Nj arid

IKe

Max i mm

jeC

t otal t e. mper at ur e

e )

own-

st r eamof nozzl e

exi t

downstr eamof t he exi t t o t he nozzl e exi t

vel oci t y

-

Vg ~. Jel euj t vel oci t y, a?so Vj et , Wi,

;: :

3i.:. .mce

dormscream

of: nozal'. exi t.

I

~ C ? ? - ~ O X l ~er.d?Liom.

Tha

USN

has f ormul i i t*, d a cequi . rement for a

supersoni c deck 1; runche. l nter cept or t o be

oper-

at ed f r omt he new

sea

cont rol shi ps. Tho al t er-

nate m ssi ons f or t he ai r craf t i ncl ude t he var i ous

t ypi cal Navy r equi r ement s of subsonic sur f ace

survei l l ance, combat ai r patr ol and var i ous other s.

To meet t hese requi r ement s, sever al VTOL ai r cr af t

have been st udi ed i ncl udi ng t he f ol l ow ng t ypes.

o

Ti l t PodI Tai l Si t t er

o

Advanced Har r i er

o

Augment or W ng

Al l of t hese syst ems have si gni f i cant compra-

m se8

of thei r mul t i - m ss i on capabi l i t i es f orced on

t hemby t he ver t i cal T. O r equi r ement . The var i ous

Syst ems have a great var i at i on

i n

t he heat i ng pr o-

bl ems whi ch t hey cause t o t he shi p' s deck. A sur -

vey paper of t hese pr opul si on syst ems, Ref erence

1,

has

shown a

si gni f i cant advant age f or syst ems whi ch

ut i l i ze al l avai l abl e t hr ust on board at T.O and

t he hi ghest possi bl e speci f i c thrust at T. O , such

a8 i s gi ven by r eheat augmentat i on. Syst ems wi t h

l ow speci f i c thrust at T.O r equi r e a l ar ge por t i on

of t he Al C vol ume to be consumed f or T.O propul -

si on causi ng comprom ses i n t he AI C St r uct ur es,

w ng desi gn and usef ul avai l abl e vol ume f or non-

propul si ve pur poses. An added advant age f or t he

hi gh speci f i c thrust syst ems i s t hdm ni m z i ng of

t he l arge i nstal l at i on penal t i es whi ch ar e associ -

ated w t h VTOL ai rcraft ' s hi gh t hr ust l oadi ngs.

I n t he past , t he magni t ude of t hese l osses has not

been report ed si nce much of t he drag caused by t he

VML pr opul si on has been i ncl uded

i n

t he basi c ai r -

craf t drag pol ar and not at t r i but ed di rectl y t o the

pr opul si ve devi ce. As t he engi ne speci f i c t hr ust

Is i ncr eased t hese f actor s ar e m ni m zed even t hough

t he i nt ernal engi ne crui se per f ormance decr eases.

Proper assessment of the above f act or s t ends t oward

r educed bypass r ati o, beyond t hat whi ch resul t s f r om

an uni nstal l ed opt i m zat i on techni que. Al l

of

t hese

consi derat i ons and a 6ompl ete ai r cr af t s yst emst udy

l ed t o t he desi gn of a composi t e ai rcr af t ut i l i z i ng

r eheat augment at i on i n the take- of f mode whi ch i s

i l l us t rated i n Fi gur e

1. 

Compos i te di rect l i f t p l us l i f t l c rui se

engi ne

Fi g. 1 VlQL Ai rpl ane, 3 Vi ew

1

Page 3: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 3/7

The compl et e descr i pti on of t he advant ages and

perf ormance of t hi s ai r craf t i s beyond t he scope

of thi s paper. Here, we wi l l rest r i ct oursel ves to

exam ni ng t he magni t ude of t he probl emf or saf e

operat i on of t hi s ai rcr af t wi t h i t s r esul tant hi gh

exhaust vel oci t i es and temper atur e.

Conf i gurat i on Descr i pt i on

Two

l eaky t ur boj et engi nes of bypass r ati o of

. 2

were

ut i l i zed for t he l i f t l c rui se requi rement

w t h one advanced di r ect l i f t engine l ocated i n the

f usel age. The engi nes are l ocated as cl ose

s

can

be achi eved to t he ai r cr af t CG t o m ni m ze moment s

and al l ow i nf l i ght Vectori ng f or maneuverabi l i t y.

Rro separate i nst al l ati ons were anal yzed to deter-

m ne t he eff ect s of nozzl e desi gn

on

deck. heati ng.

The f i r s t u t i l i z ed a conventi onal r ound nozzl e in-

s t al l ed w t h a t hree bear i ng t ai l pi pe. The second

nozzl e w a s a t wo- di mensi onal desi gn. Per t i nent

geomet r y and t he di f f er ence i n hei ght above deck of

the nozzl es i s i l l ustr ated

i n

Fi gur e 2.   A l ow

carbon st eel deck of 314 i n. t hi ckness was assumed.

CI RCULAR

3- BEARI NG 2- DI MENSI ONAL

i g. 2

VTOL

Nozzl e Conf i gur ati ons

Method of Sol uti on

The

wethod of anal ysi s consi st ed of a sem -

empi r i cal t echni que f or det erm ni ng t he heat t rans-

f er coef f i ci ent s and r ecover y temper atur es whi ch

wer e

used as i nput t o an anal yti cal t r ansi ent heat

t r ansf er comput er pr ogr am Onl y a general descr i p-

t i on of t he t echni ques empl oyed i s pr ovi ded, i n the

i nterest of brevi ty .

A

t r ansi ent heat t r ansf er computer pr ogr amwas

empl oyed (HETRANS) whi ch gave an axi syrometr i c nodal

sol uti on t o the energy bal ance equati on. A pr i mary

si mpl i f i cat i on i n the anal ysi s was consi derati on

of onl y

a

si ngl e j et exhaust . The t emper atur e pr o-

f i l e between nozzl es coul d not be pr edi cted w t h

t hi s method, but as wi l l be di scussed l at er , the

t emperat ure decay away fr omt he j et center l i ne i s

so rapi d t hat t he peak deck t emperatures ar e st i l l

val i d.

Ot her si mpl i f i cati ons and assumpti ons

wer e nec-

essar y i n order t o obt ai n

a

sol ut i on. Ef f ects of

nozzle shape on vel oci t y and t emper at ure decay of

the j et

were

i ncl uded, but not

on

pl ume shape.

Thus, t he characteri st i cs of t he pl ume were based

on par amet er s non- di mensi onal i zed by an equi va-

l ent nozzl e di ameter, i .e.,

a

di amet er whi ch woul d

r esul t i n an equi val ent nozzl e

area.

The

nodal net wor k w a s set up

as

shown

i n

Fi gur e 3.

r equi r ed f o r nor mal t akeof f s and l andi ngs, i t

was

consi der ed necessar y f O K t he abort ed takeof f to

bati c sur f ace exi st ed at t he out er peri phery. The

boundar y condi t i on i mposed at t he l ower surf ace of

t he l aunch deck was t hat of nat ural convect i on wi t h

a

f i l m coef f i ci ent of

1

Bt u/Ft 2

- HR -

OF.

Al t hough t hi s l arge of a net work w a s not

ver i f y the val i di t y of t he assumpt i on t hat an adi a-

. . . .

I

.I I 2 4 7 111 1 5 2 0

25

Fi g.   3 Axi symmet r i c Nodal Net wor k

Pr i mar y i nput r equi r ed f or t he HETRANS program

i s t he heat t r ansf er coeff i ci ent and r ecovery t emp-

erat ure at t he deck surf ace as f unct i on of t i me

and di st ance f r omt he j et cent erl i ne. Vari ous

met hods wer e eval uat ed and composed.

Several i nvest i gat or s have measured

an d

cor r el -

at ed heat t r ansf er. General l y, t he f ormof t he

corr el ati on i s gi ven by:

NU

=

C

. ReA P

f (R/ L) where, 1)

A, B, C,

=

Const ant s of empi r i cal corr el ati on

F(R/ L)

= Functi on of di st ance f r omt he j et

center l i ne

Donal dson' s, et al , (Ref . 2) cor r el ati on and

dat a

on

heat t r ans fer coef f i c i ents , h, f or j et s i m

pi ngi ng

on

a f l at sur f acewas f ound both sat i sf ac-

tory and fai r l y si mpl e to appl y. Donal dson' s t est

dat a i s summar i zed

i n

Fi gur e 4 A smal l t rend w t h

Reynol ds number

i s

apparent . A hi gh Re f ai r i n%of

t he dat a

was

empl oyed.

I n

order to eval uat e the heat t ransf er coef f i c-

i ent , a method f or pr edi ct i ng t he j et vel oci t y and

t emperat ure decay charact eri st i cs

w a s

necessar y.

An empi r i cal equat i on obt ai ned f r omRef erence

3 was

sel ect ed t o predi ct t he j et vel oci t y decay.

wher e,

A1

=

41   8 1 3 ( Da/ Dh -

Page 4: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 4/7

Fig. 4

Corre la t ion of Heat Transfe r

Data

The above empi r ical re la t ion ship s were developed

from cold j e t model t e s t s , so t h a t a c o r r e c t i o n f o r

hot j e t s

w s

necessa ry. This was accomplished by

adj us t i ng the coe ff ic i en t (Cn) i n the above equa-

t i o n t o n e a r l y d u p l i c a t e h o t

j e t

r e s u l t s .

s pec i f i c a l l y , t he cu rve l equat l on shown i n  F igure

which was determined from tes t9 of a wide var ie ty

of nozzle shapes

was

used t o de f i ne

Cn.

The quan-

t i t y ( 1

-

CvsTD)

w a s

a d j u s t e d u n t i l e q ua ti o n

2)

nea r l y dup l i ca t ed t he ho t

j e t

tes t

results of

Reference

4.

More

Fig.

Corre la t ion of Veloci ty Coeff ic ien t Data

I t was a l s o neces s a ry t o p red i c t t he t em perat u re

decay of th e j e t with d i s t anc e from the

n o z z l e

e x i t

plane.

ava i l a b l e fo r anyt h ing o t he r t han c i r c u l a r nozz l e s.

A

cor re l a t io n of t emperature decay wi th ve lo ci ty

decay w a s made from the data of Reference 4 wfth

S a t i s f a c t o r y r e s u l t s ( Fi g ur e 6 ) . This Corre la t ion

w a s checked agains t data f rom independent murces

as

No ana l y t i c a l means t o do t h i s was - read i l y

shown i n  

Figure

7  wi t h r eas onab l e ve r i f i ca t i on .

Fig. 6 Velocity Decay Versus Temper ature Decay

Correla t ion .

o CE

nonu

TESTS

CORREUTION

i

2

3 . 4

5

6

. 7

.8 .9 1.0

TOTAL TFhlPERATURE

DECAY-

TT

MAX

To

TT n -

To

Fig. 7 Sub sta nt i at i on of Temperature Decay

C or re l a t i on .

In t h i s s tu d y, t h e t r a n s p o r t p r o p e r t i e s o f a i r

were used t o desc r ibe th ose of

t he j e t Values of

y ,

C ,

,

and v

were

var i ed wi t h s t a t i c temperature

a t t t e

j e t

impingement poin t , co ns ist en t with

Donaldson' s data re duct i on on h e a t t r a n s f e r c o e f f i -

c i e n t .

t o t a l t emperature , which amounts to

a

s l i g h t l y

cons erva t ive approximation .

The recovery temperature w a s taken

a6

t h e

Page 5: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 5/7

The e n t i r e p r o c ed ur e f o r c a l c u l a t i n g h e a t t r an s -

f e r coe f f i c i e n t and r ecovery tem pera t ure

was

pro-

grammed on a t ime sh ar ing computer to speed t he

cal cul a t io ns . These parameters

were

i n pu t i n t o t h e

t r a ns i en t hea t t r a n s f e r prog ram a l ong wi t h t h e

nodal network des cr ipt io n and Rppropriate boundary

cond i t i o r s f o r t he ca l cu l . a t ian o f t em pera t u re a s

a

funct ion of t i m e and loc at i on. Teniperatures a t t h e

cen t e r o f

the

nodes

were

computed, s o

a

s l i g h t

ex-

t r apo l a t i on o f

t he ou t put

was

r e q u i r e d t o o b t a i n

s u r fac e and ge t cen t e r l i n e t em pera t u res .

R es u l t s

Ai rc ra f t Opera t i on

Var ious m eans o f ope ra t i ng t he a i r c ra f t i n t he

VTOL mode

were

evaluated . Operat ional exper ience

o n t h e Harrier a i r c r a f t

has

f ou nd t h a t t h e " r o l l i n g

& t i c a l t akeoff" i s th e bes t ov er al l method. This

avoids re ing es t ion , for e ig n object damage, and

a l l

s i p i f i c a n t s u rf a ce h e at in g.

s ho r t l eng th . I f t h i s t echn ique i s not used and

a

p u re v e r t i c a l t a k eo f f i s r e q u i r e d, t h e h e a t i n g

problems

are

wors t .

t o u t i l i z e

a

ho l d down dev ice i n o rde r t o a s s u re

f u l l b a l an ce t h r u s t

i s

avai , lnble prior

t o l i f t

o f f .

This method

w a s

i nves t i ga t ed and t h e

eZ f e L t

of b o l J

down

t i m e

evaluated (F igure

8) .

I n t h i s a n a l y si ~ s ,

augmented t hr us t requi re d fo r

.OR 8 s

a c c e l e r a t i o n

w a s app lie d during th e hold down period .

The

r o l l h a s a very

The most Severe opera t i on i s

Fig. 8 Effec. t of Hold 1 I o m T;me o n Peak

S u r fa c e

Temperature.

A

second method

was

s t ud i ed i n whi ch

the

engine

was

acce l e ra t ed wi t h t he nozz l e f i xed i n t h e V-mrxle

position.

Peak te.npr-ratuv:s

re:irherl

w e v e

:il :gl*t. 'Y

cs5 thap rho our

s ~ m t l ?

old rlowi c as ?

.

p l e Condit ions

The

e f f e c t o

enpine

cjcl,.

cond i t i ons

Pol)

w r l ~

i nves t i ga t ed

1usini: t h v

two-dimensional iiozzle

and

n

four sec md hgl d dorm

opcmt. icn:~l.

procedure.

t h r e e

case:.

used t u o h t a i n t h e t r c n d of Fi.guurc 9

The

correspond t o maximum d ry , pa r t i a l r ehea t and f u l l

reheat condi t ions .

600

500

400

300

200

IO0

2-D

NOZZLE

o TAKEOFF

0

IO00

COO

3000 4000

T - F

T8

Fig.

9

Effect of T T ~ n Peak Deck Temperature

Inc reas e

-akeoff Versus L a d i s

Takeoff i s by f a r t h e c r i t i c a 1 , m o de a€ opera t i on

compared to l anding , s i nc e rehea t

i s

r e q ui r e d f a r

a c c e l e r a t i o n d u ri n g t h i s h i g h e r

gross

weight con-

dit ion. The 2-D nozzle with a ' four second h o l d

down during takeoff ind ica ted

a

peak deck tempera-

tu re 280°F h igher then f a r a l a nd i ng w it h 'a 1 0 f t l

s e c

r a t e

01: s i nk .

T h e

corresponding jet tempera-

r c % w

vere

?? A';' end I 'X i 'F, ' :esm*rti.vrly.

TI,,?

< feci

t1 ~

IC

:ate o f ::lr.k

:R 3) .I,rr.inp.

l.andL-,g was invrsvlg;

tg.1 an,?

f r i i r i i d

m ~ ; . r i n r i l r - l~ :>c iv c

fo

poak tcmperat , rea? but

the

t i ne to peak tempera-

tu re var ie d between 5 .8 seconds fo r R J S - 1 5 f p s t o

12 .0 seconds for

RIS

- 5 fps .

assumed t o be 50 f ee t above t he deck a t t h e

s t a r t

of

th e v e r t i c a l landi .ng descent . Landing power

was

held cons tant F o r two seconds a f t e r 1:ouchdom. and

varied 1 . i n e a r l ~

o

prier 1 F f i n f i v e seccndn.

The a i r c r a f t

was

6

Page 6: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 6/7

mx

r

acr oss the sur f ace,

as wel l

as t he expect ed cool i ng

char acteri st i cs of the deck w t h ti me.

Fi gur e 12 shows t he temper ature vers us t i me of

var i ous nodes dur i ng t akeoff w t h t he 2- 0 nozzl e

and t he f our second hol d down ( r ef er t o F i gur e 3 

t he l ar ge t emper atur e gradi ent t hrough t he deck

k

2

3

l rn .

, near t he center l i ne at t he t i me when t he surf ace

2 has r eached i t s peak t emperat ur e. Thi s gradi ent

di sappear s qui ckl y, however . These character i st i cs

are , of course, a f unct i on pri mari l y of t he t hermal

conduct i vi t v of t he mat eri al . The mater i al DroDer-

21111

f or descr i pt i on of node l ocati on). Of i nt erest i s

:

0 -

t i es assumed f or t he l ow carbon st eel

are

as

f ol l ows:

HANOC

Pun18

T h e m1 Conduct i vi t y

K )

= 7 . 5 x

BtuI Ft- Sec' F

3

Materi al Densi t y (

)

=

489

l bs / F t

Speci f i c Heat (C,) = . 10Btu/l 6' F

\

0 i 1 ; ia A6 1s ?o n The t her mal gradi ent s and cor r espondi ng expan-

si ons must be account ed f or i n t he deck desi gn.

IMi-sECwos

F i g .

10 Heat Tr ansf er and Recover y Temperat ur e

f or Node 1 Duri ng Abort ed Takeof f .

2-1) NOZZLE

7

ABORTED TAKEOFF

.

ODf

1 m V L - - U - .

I

0 4 8 12 16 20

24

IW IM

5W

7W

T lM t - S ECONDS

Fi g. 11 Deck Temper at ure Var i at i on Near Cent er-

l i ne Dur i ng Abor t ed Takeof f .

Nozzl e Conf i gur ati on

Under t akeof f condi t i ons w t h a f our second hol d

down, t he ci r cul ar nozzl e pr oduced a peak deck

t emper at ure 90 F hi gher t han the aspect r ati o 2,

2- Di mensi onal nozzl e.

vel oci t y and t emper atur e decay of t he ci r cul ar

nozzl e and i t s

c l oser

ground proxi m t y bef ore l i f t -

of f (1. 73 f t versus

4 . 0

ft). I ncr easi ng t he 2-D

nozzl e aspect r at i o to pr oduced

a

peak t emper a-

t ur e r educt i on

of

40'F,

due to i ncr eased vel oci t y

and j et t emper ature decay. Duri ng l andi ng, t he

ci r cul ar nozzl e resul t ed i n

a

deck t emper at ure 50-F

hi gher, r el ati ve t o the 2- 0 (AR

=

2) nozzl e.

Temperature Prof i l e Characteri st i cs

Thi s was caused by r educed

To thi s poi nt , di scussi on of t he resul t s has

been l i m t ed t o t he peak t emper atur e r i se

of

t he

deck due t o j et i mpi ngement . Of i nter est al so are

t emper ature gradi ent s bot h t hrough t he deck and

v.

NODE

5w

2-0 NOZZLE A

I

8 2

c 3

AKEOFF

D 4

E 5

0 2 4 6---1 0 1 2 +

Irn

3 m rdo liw

TIME - SECON@S

NODL

__

A

21

B

C

D ;i

25

TIME- S fCONOS

Fi g.   1 2 Deck Temper at ure Var i at i on Dur i ng Normal

Takeof f .

I t

shoul d be not ed that r adi ati ve heat t r ansf er

f r omt he j et to t he sur f ace and sur f ace to t he at -

mospher e were i gnored, si nce t he ef f ect woul d have

been sl i ght and cancel i ng.

Not e al so f r omFi gure 12  that t he deck does not

cool o f f very f ast, and that near t he j et cent er-

l i ne l ocat i on the deck sur f ace i s st i l l at

a

t emp-

erat ur e of 250°F af t er 10 m nutes. The cool i ng of f

pr ocess was based, on a f r ee convect i on heat t r ans-

f er coef f i c i ent of 3 .0 Btu/hr-ft' -' F est i mat ed to

exi st f o r

a 2

knot w nd- over- deck.

The hot spot

5

Page 7: CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

7/27/2019 CFD Deck Heating Effect Due to VTOL Jet Exhaust Impingement.pdf

http://slidepdf.com/reader/full/cfd-deck-heating-effect-due-to-vtol-jet-exhaust-impingementpdf 7/7

i s very l ocal i zed, however,

si nce

at

a

di st ance of

5.5 f eet f r omt he centerl i ne, the deck

i s

onl y

150 F af t er s i x m nut es.

across t he deck' s surf ace i s more vi vi dl y pi ct ur ed

i n Fi gure 13, whi ch shows t hat si gni f i cant heat i ng

of t he deck i s conf i ned to a radi us of i rom

6

t o 8

f eet f romt he nozzl e center l i ne.

The radi al gr adi ent

0

4 8 I2

16

10

Zd 8

D I S I A N C I

FROM

J t l C t N T t R L I N t T T .

Fi g. 13 Radi al Var i ati on of Surf ace Temperatur e

Durlng Takeof f .

A br i ef i nvest i gat i on i nt o materi al pr opert i es

resul ted i n

no

surpri ses. That i s, hi gh conduc-

t i vi ty r esul ted i n l ower peak t emperat ur es and re-

duced gr adi ent s, whi l e l ow conduct i vi t y r esul t ed i n

t he opposi t e. Thus, i f an i nsul ator

were

used to

pr ot ect t he st eel , i t woul d have to have a ver y

hi gh decomposi t i on temperat ure, si nce t emper atur es

r eached woul d be much hi gher t han t he unpr ot ect ed

s t eel .

S u mr y of Resul t s

An overal l compari son of peak deck t emper at ures

r eached for al l t he

cases

i nvest i gated i n thi s

st udy i s pr ovi ded i n Fi gure 14.   Apparent f r om t he

f i gure i s t hat j et t emper atur e and oper ati onal pr o-

cedur es ( hol d down ti me, spool up) ar e t he pri mar y

f act ors af f ecti ng deck heat i ng. Secondary f actor s

are nozzl e desi gn and pr oxi m t y to t he deck.

ConclusionslRecormnend=ti~n~

Deck heat i ng f or augment ed VTOL sys t ems dur i ng

t akeof f cannot be i gnor ed. However, i n Si t uati ons

wher e a s l i ght r ol l can be empl oyed, t he probl emi s

essent i al l y eliminated. In cases wher e pur e vert-

i cal takeof f

is

used, t he deck t emper atur es reached,

whi l e s i gni f i cant , ar e very l ocal i zed and not suf -

f i ci ent t o damage a properl y desi gned l ow carbon

st eel deck.

nozzl e desi gns, l ocat i on and speci al Operati onal

procedures.

andi of t he f l i ght cr ew can el i m nate any saf ety

hazards. For t hese r easons, t her e appear s no need

t o i ncl ude deck heat i ng as a compr om si ng consi der -

ati on i n the engi ne cycl e sel ect i on process f or

m xed ms si on VTOL ai r craft .

Heati ng can be m ni m zed t hrough

Speci al i nstr ucti ons and modus oper-

6W

r-

T AKEO F F S

LANDINGS -

Fi g. 14 summary of Resul t s on Peak Temperat ur e

I ncrease.

More st udy and anal ysi s to veri f y t he resul t s

and concl usi ons of t hi s study ar e desi rabl e. Sev-

eral assumpci ons and s i mpl i f i cati ons were necessar y

to perf ormt he anal ysi s repor t ed, t he most si gni f i -

cant of whi ch wa s consi derati on of onl y a si ngl e

nozzl e exhaust . Heat tr ansf er coef f i ci ent and re -

covery t emper atur e data f or j et i mpi ngement at

hi gher Reynol ds number s

are,

needed.

Ref er ences

1. Kappus, P.G , and Kohn, A. O , Concept ual St udy

of Hi gh Per f or mance V/ STOL Fi ght er s, ASME Paper

73- GT-66, Apri l 1973.

2 Donal dson, C. D , and Snedeker, R. S. , A St udy of

Free J et I mpi ngement , J our nal of Fl ui d Mechan-

i cs

-

Vol . 45, Par t s

2

and 3, 30

January,

15

Februar y 1971.

3 . Uon Gl ahn, U. H. , Geoesbeck, D E. , and Huf f , R.

RG, Peak Axi al Vel oci t y Decay w t h Si ngl e and

Mul t i - El ement Nozzl es, NASA TMS- 67979, J anuar y

1972.

4. Hi ggi ns, C.C., Kel l y, D P., and Wai nwr i ght,

T. W, Exhaust J et Wake and Thr ust Char act er -

Downwash Suppr ess i on, NASA CR- 373, J anuary 1966.

i st i cs of Several Nozzl es Desi gned f or VTOL

6