52
Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Embed Size (px)

Citation preview

Page 1: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Cellular Communication

Kamil RůžičkaFGP CEITEC MU

Genomics Lectures

Page 2: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

How does fluorescence work?

Page 3: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

How does a fluorescence microscope work?

Page 4: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

How does a confocal microscope work?

Page 5: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Protein localizationlive imaging

Martin Chalfie

GFP discovery - Nobel Prize 2008

Roger TsienOsamu Shimomura

Page 6: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

GFP fusions

your genepromoterhere can be GFP

here can be GFP

terminator

your genepromoter terminator

your genepromoter terminatorhere can be GFP

N-terminal fusion

C-terminal fusion

fusion inside the coding sequence

Page 7: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

GFP and membrane proteins

here can be GFP

It is good to have GFP tag localized inside the cell

Page 8: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Fluorescent proteins on the market

Page 9: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Excitation and emission

Page 10: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Multicolored fluorescent protein(neurones)

Page 11: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Transport amongcompartments

Alberts et al. 2008

Page 12: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Also RNA can be differentially localized

Page 13: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

RNA ZIP codes for localization

Mikko Frilander

Page 14: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

ZIP codes often motor protein bound

Mikko Frilander

Page 15: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Delivering at the correct address

1. Localisation complexassembly starts already in the nucleus

2. Cytoplasmic mRNP is"matured“, nuclear export proteins removed, additional proteins attached.

3. mRNP is associatedwith motor and transport system and delivered to the destination

4. Delivered mRNP isanchored to the destination (for storage) or translated directly.

Mikko Frilander

Page 16: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Localization of mRNARNA hybridization in situ

Page 17: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Localization of mRNARNA hybridization in situ

• classical technique, no alternative in developmental biology

• results often clear• can be done without generating transgenic lines

• tedious• only on “dead” samples

Page 18: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

λN22 system

nuclear localization signal

promoter

viral RNA binding protein

Page 19: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Also mRNA can be differentially localized

Ash1 mRNA localized to the tip of the daughter cell

Page 20: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Also mRNA can be differentially localized

Page 21: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Also mRNA can be differentially localized

Page 22: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Protein localizationimmunolocalization - fluorescently

fluorescent dye attached

primary antibodies

secondary antibodies

Page 23: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Protein localizationimmunolocalization - immunogold

electron microscope

Page 24: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Transport amongcompartments

Alberts et al. 2008

Page 25: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Protein sorting – target peptides

Page 26: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Nuclear transport

nucleoporins

Page 27: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Nuclear import

Page 28: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Nuclear import

Page 29: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Mitochondrial transport

TIM and TOM complexes decide at which side of mitochondria the protein will be transported.

Page 30: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Advanced confocal techniques

• FRAP

• photoactivatable FP

• FCS

Page 31: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP

region of interest

Fluorescence Recovery After Photobleaching

Page 32: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP

Page 33: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP – bleaching curve

Page 34: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

iFRAPinverse FRAP

Page 35: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

iFRAP – dissociation of premRNA from specles

Page 36: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP - advantages

• not only proteins (also other dyes)

Page 37: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

• your cells are moving

• high energy needed to bleach the ROI– can damage your material– long time needed to bleach

• usually only one ROI can be observed – time consuming

FRAP – disadvantages

Page 38: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP derivativesFLIP

Fluorescence Loss After Photobleaching

• bleaching process is repeated during the experiment• for studying general protein turnovers in compartments• less often used

continuous bleaching here

Page 39: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FRAP derivativesFLAP

Fluorescence Localization after Photobleaching

• two fluorochromes on one protein– one bleached, non bleached as control

Page 40: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Intermezzo:story from a conference

even top scientists can be wrong

Page 41: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Photoactivable proteins

photoactivation(UV)

non activated

activated overlay

Page 42: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Photoactivable proteins

Dronpa, Kaede, Eos – probably most popular

Page 43: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Photoactivable proteins

Advantages:-most elegant, most convincing

Disadvantages:-very weak signal-each material needs optimization

Page 44: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

Remarks

• your material is 3D

• protein de novo synthesis in some experiments (e.g. cycloheximide stops translation)

Page 45: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FLIMFluorescence Life Time Imaging Microscopy

Fluorochromes•excitation spectra•emission spectra•unique lifetime

Lifetime sensitive to almost everything:•pH•ionic strength•polarity•other fluorochrome

Page 46: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FLIM - applications

Protein-protein interactions(FRET-FLIM) (other lecture)

Page 47: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FLIM - applications

lifetime decreased by site specific IgG injection

phosphorylation assay

Page 48: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FCSFluorescence Correlation Spectroscopy

t + τ It is counted, how many times the fluorescent molecule comes through the focal plane.

autocorrelation analysisAutocorrelation analysis: the way how to discriminate the diffusions speeds of particles.

Page 49: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FCS

control membrane boundGFP and RFP(crosscorrelation curve)

free GFP and RFP

Page 50: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FCS

control membrane boundGFP and RFP(crosscorrelation curve)

channel crosstalk threshold

Page 51: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FCS

control membrane boundGFP and RFP(crosscorrelation curve)

receptor with two labels

channel crosstalk threshold

Page 52: Cellular Communication Kamil Růžička FGP CEITEC MU Genomics Lectures

FCS

receptor with two labels

the crosscorelation curve is above threshold -> EGFR protein dimerizes

Liu et al., 2007