36
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (1/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International Summer School of the GDR PH-QCD “Correlations between partons in nucleons” N

Cédric Lorcé

  • Upload
    tybalt

  • View
    20

  • Download
    2

Embed Size (px)

DESCRIPTION

Second International Summer School of the GDR PH-QCD “Correlations between partons in nucleons”. N. Cédric Lorcé. Multidimensional pictures of the nucleon (1/3). IFPA Liège. June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France. Outline. Introduction Tour in phase space - PowerPoint PPT Presentation

Citation preview

Page 1: Cédric Lorcé

Cédric LorcéIFPA Liège

Multidimensional pictures of the nucleon (1/3)

June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France

Second International Summer School of the GDR PH-QCD

“Correlations between partons in nucleons”

N

Page 2: Cédric Lorcé

Outline

• Introduction• Tour in phase space• Galileo vs Lorentz• Photon point of view

Lecture 1

Page 3: Cédric Lorcé

Introduction

10-14m 10-15m 10-18m10-10m

d

u

Atom Nucleus Nucleons

Quarks

Atomic physics

Nuclear physics

Hadronic

physics

Particle physics

Proton

Neutron

Up

Down

Structure of matter

1/33

Page 4: Cédric Lorcé

Introduction

Elementary particles

Matter Interaction

Graviton ?

2/33

Page 5: Cédric Lorcé

Introduction

Relevant degrees of freedom depend on typical energy scale

Degrees of freedom

« Resolution »

3/33

Page 6: Cédric Lorcé

Introduction

Nucleon pictures

« Naive » Realistic

3 non-relativistic heavy quarks

Indefinite # of relativistic light quarks

and gluons

MN = Σ mconst (~2%) + Eint (~98% !)

Quantum Mechanics + Special Relativity = Quantum Field Theory

Brout-Englert-Higgs mechanism

QCD

4/33

MN ~ Σ mconst

Page 7: Cédric Lorcé

Introduction

At the energy frontier

Goal : understanding the nucleon internal structure

Why ?

LHC

Quark & gluon distributions ?

Proton Proton

5/33

Page 8: Cédric Lorcé

Introduction

At the intensity frontier

Why ?

Nucleon shape & size ?Nucleon spin structure ?

Nucleon

Electron

Goal : understanding the nucleon internal structure

6/33

E.g.

Page 9: Cédric Lorcé

Introduction

How ?

Deep Inelastic Scattering Elastic Scattering

Deeply Virtual Compton ScatteringSemi-Inclusive DIS

Proton « tomography 

»

Phase-space distribution

Goal : understanding the nucleon internal structure

7/33

Page 10: Cédric Lorcé

[Gibbs (1901)]

State of the system

Phase space

Classical Mechanics

Position

Mom

en

tum

Particles follow well-defined trajectories

8/33

Page 11: Cédric Lorcé

[Gibbs (1902)]

Phase-space density

Phase space

Statistical Mechanics

Position

Mom

en

tum

Position-space density

Momentum-space density

Phase-space average

9/33

Page 12: Cédric Lorcé

[Wigner (1932)][Moyal (1949)]

Wigner distribution

Phase space

Quantum Mechanics

Position

Mom

en

tum

Position-space density

Momentum-space density

Phase-space average

10/33

Page 13: Cédric Lorcé

[Wigner (1932)][Moyal (1949)]

Wigner distribution

Phase space

Quantum Mechanics

Position

Mom

en

tum

Hermitian (symmetric) derivative

Fourier conjugate variables

11/33

Page 14: Cédric Lorcé

Phase space

Harmonic oscillator

Heisenberg’s uncertainty

relations

Wigner distributions have applications in:

• Nuclear physics • Quantum chemistry• Quantum molecular dynamics• Quantum information• Quantum optics• Classical optics• Signal analysis• Image processing• Quark-gluon plasma• …

Quasi-probabilistic

12/33

Page 15: Cédric Lorcé

Phase space

In quantum optics, Wigner distributions are « measured » using homodyne tomography

Idea : measuring projections of Wigner distributions from different directions

Binocular vision in

phase space !

2D 2D

3D

Find the hidden 3D picture

13/33

[Lvovski et al. (2001)][Bimbard et al.

(2014)]

Page 16: Cédric Lorcé

Phase-space/Wigner distribution

Phase space

Quantum Field Theory

Covariant Wigner operator

[Carruthers, Zachariasen (1976)]

[Ochs, Heinz (1997)]

Equal-time Wigner operator

Time ordering ?

Scalar fields

14/33

Page 17: Cédric Lorcé

Phase space

~ internal motion center-of-mass motion

Nucleons are composite systems

Interesting Not so interesting

15/33

Page 18: Cédric Lorcé

[Ji (2003)][Belitsky, Ji, Yuan (2004)]

Phase space

in position space

Localized state in momentum space

Phase-space compromise

Intrinsic phase-space/Wigner distribution

Identified with intrinsic variables

Breit frame

CoM momentum

CoM position

16/33

Page 19: Cédric Lorcé

[Ji (2003)][Belitsky, Ji, Yuan (2004)]

Phase space

in position space

Localized state in momentum space

Phase-space compromise

Intrinsic phase-space/Wigner distribution

Identified with intrinsic variables

Breit frame

CoM momentum

CoM position

Time translation

Same energy !

17/33

Page 20: Cédric Lorcé

Galilean symmetry

All is fine as long as space-time symmetry is Galilean

Position operator can be defined

18/33

Page 21: Cédric Lorcé

Lorentz symmetry

But in relativity, space-time symmetry is Lorentzian

Position operator is ill-defined !

Lorentz contraction

Creation/annihilation of pairs

No separation of CoM and internal coordinates

Further issues :

Spoils (quasi-) probabilistic

interpretation

19/33

Page 22: Cédric Lorcé

Instant-form dynamics Light-front form dynamics

Forms of dynamics

Space-time foliation

[Dirac (1949)]

« Space » = 3D

hypersurface

« Time » = hypersurface

label

Light-front components

Time

Space

Energy

Momentum

20/33

Page 23: Cédric Lorcé

t4, z4

t3, z3

t2, z2

Instant form vs light-front form

t1, z1

Ordinary point of view

t5, z5

t6, z6

t7, z7

21/33

Page 24: Cédric Lorcé

Instant form vs light-front form

Photon point of view

x+

x+

x+

x+x+

x+

x+

22/33

Page 25: Cédric Lorcé

Instant form vs light-front form

Initial frame

23/33

Page 26: Cédric Lorcé

Instant form vs light-front form

Boosted frame

24/33

Page 27: Cédric Lorcé

Instant form vs light-front form

(Quasi) infinite-momentum frame

25/33

Page 28: Cédric Lorcé

Transverse boost

Longitudinal momentum plays the role of mass in the transverse plane

Light-front operators

[Kogut, Soper (1970)]

Transverse space-time symmetry is Galilean

Transverse position operator can be defined !

26/33

Page 29: Cédric Lorcé

Quasi-probabilistic interpretation

What about the further issues with Special Relativity ?

Transverse boosts are Galilean No transverse Lorentz contraction !

No sensitivity to longitudinal Lorentz contraction !

is conserved and positive

Drell-Yan frame

Particle number is conserved in Drell-Yan frame

Conclusion : quasi-probabilistic interpretation is possible !

27/33

Page 30: Cédric Lorcé

[Ji (2003)][Belitsky, Ji, Yuan (2004)]

Non-relativistic phase space

in position space

Localized state in momentum space

Identified with intrinsic variables

CoM momentum

CoM position

Time translation

28/33

Equal-time Wigner operator

Intrinsic phase-space/Wigner distribution

Page 31: Cédric Lorcé

Relativistic phase space

in position space

Localized state in momentum space« CoM »

momentum

« CoM » position

Equal light-front time Wigner operator

Intrinsic relativistic phase-space/Wigner distribution

Space-time translation

[C.L., Pasquini (2011)]

[Soper (1977)][Burkardt (2000)][Burkardt (2003)]

[Ji (2003)][Belitsky, Ji, Yuan (2004)]

Boost invariant !

Normalization

29/33

Page 32: Cédric Lorcé

NB : is invariant under light-front boosts

Relativistic phase space

Our intuition is instant form and not light-front form

It can be thought as instant form phase-space/Wigner distribution in IMF !

2+3D

Longitudinal momentum

Transverse momentum

Transverse position

In IMF, the nucleon looks like a pancake

[C.L., Pasquini (2011)]

30/33

Page 33: Cédric Lorcé

Link with parton correlators

General parton correlator

Phase-space/Wigner distributions are Fourier transforms

31/33

Space-time translation

Page 34: Cédric Lorcé

Link with parton correlators

Adding spin to the picture

Leading twist

Dirac matrix ~ quark polarization

32/33

Page 35: Cédric Lorcé

Link with parton correlators

Adding spin and color to the picture

Wilson line

Gauge transformation

Very very very complicated object not directly measurable

Let’s look for simpler measurable correlators

33/33

Page 36: Cédric Lorcé

Summary

• Understanding nucleon internal structure is essential• Concept of phase space can be generalized to QM and QFT• Relativistic effects force us to abandon 1D in phase space

Lecture 1

2+3D

Transverse momentum

Transverse position