CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

  • Upload
    bsitler

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    1/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    CE5101 Lecture 4

    Seepage and FEM

    by

    Prof Harr Tan

    1

    SEP 2011

    Outline

    • Seepage and 1D Slope Stability

    • Seepage in FEM (Steady State Analysis)

    • Case History of SICC Slope Failure

    • FEM Seepage in Excavations

    • Case History of One North Excavation with

    2

    GWT lowering• Transient Seepage in Excavations

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    2/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Seepage Analysis

    • Simple Flow nets

    • ap ace qua on

     p

     xk q  x x

     Darcy’s Law

    3

    02

    2

     xk 

     x

    q x

    w

     

      

    Steady State Laplace Eqn

    Seepage in Drained Slope Failure

    4

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    3/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    4/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    (c) GWT below Slip Plane with suction

    (d) Waterlogged Slope with Steady Parallel Seepage

    7

    8

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    5/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    9

    10

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    6/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    7/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    13

    Why do we need a

    permeability function?

    Can the problem be

    14

    so ve w ou era ons

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    8/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    TRANSITION SATURATED/UNSATURATED

     x xq K k   x

    r     y y y

    4

    4

    1 saturated zone

    10 unsaturated zone

    4k 

    h hr r 

    h

    15

    0.7m (PLAXIS)

    h

    h  

    TYPES OF FLOW PROBLEMS

    Confined flow   Unconfined flow

    16

    Domain defined Domain undefined

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    9/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    10/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    11/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Unconfined Flow in Sand

    21

    Equi-potential Plot of Groundwater

    Head

    22

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    12/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    PLAXIS Results

    Dupuit’s Theory = 0.150 m3/day/m

    23

    Confined Flow Seepage

    24

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    13/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Confined Flow Seepage

    H=15m H=13m

    25

    Closed flow boundary

    Groundwater

    Head

    26

    = m

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    14/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    27

    Case History of Slope Failure in Residual Soil

    Cut at SICC

    28

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    15/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    CIU or CID Test Should Give Same Strength

    Parameters

    29

    Slip in Cut Soil After 2 Years

    30

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    16/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Slip in Cut Soil After 2 Years

    5 m Ht

    10 m Ht

    No Failure ?

     

    31

    Slip in Cut Soil After 2 Years

    32

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    17/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Soil Profile of Cut Slope

    33

    Stress History of Cut Slope

    34

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    18/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    35

    36

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    19/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    37Summary of Lab Test Results

    SLOPE/W Analysis: FS After CUT

    1.714

    142

    144

    146

    148

    150

    Description: Reddish Brown Clayey Silt

    Soil Model: Undrained (Phi=0)

    Unit Weight: 19

    Cohesion: 35

    Description: Yellowish Brown Clayey Silt

    Soil Model: Mohr-Coulomb

    Unit Weight: 20

    :

       E   l  e  v  a

       t   i  o  n

       (  m   )

    120

    122

    124

    126

    128

    130

    132

    134

    136

    138

    38

    :

    Phi: 34Unit Wt. above WT: 18

    Distance (m)

    0 10 20 30 40 50 60110

    112

    114

    116118

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    20/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    SLOPE/W Analysis: FS After 2 Years

    1.022

    142

    144

    146

    148

    150

    Description: Reddish Brown Clayey Silt

    Soil Model: Mohr-Coulomb

    Unit Weight: 20

    Cohesion: 8

    Phi: 27

    Unit Wt. above WT: 18

    Description: Yellowish Brown Clayey Silt

    Soil Model: Mohr-Coulomb

    i i

       E   l  e  v  a

       t   i  o  n

       (  m   )

    122

    124

    126

    128

    130

    132

    134

    136

    138

    39

    ni e ig :

    Cohesion: 20

    Phi: 34

    Unit Wt. above WT: 18

    Distance (m)

    0 10 20 30 40 50 60110

    112

    114

    116

    118

    120

    PLAXIS UnDrained Analysis: FS=1.51

    Incremental Displacements Pattern

    Soil Unloaded – no sign of failure mechanism

    40

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    21/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    22/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    PLAXIS Drained Analysis: FS=1.02

    43

    PLAXIS Drained Analysis: FS=1.02

    GWT Heads showed seepage front

    exiting on slope face; this is bad

    situation for slope Phreatic s urface

    44

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    23/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    1.5

    1.6

    FS

    Chart 1

    5m CUT Draine...

    5m CUT Undra...

    PLAXIS c/phi method FS Estimation

    1.1

    1.2

    1.3

    1.4

    m ran...

    45

    0 1 2 3 4 5

    1

    Displacement [m]

    5m Cut Undrained, FS=1.02

    5m CUT Drained, FS=1.51

    10m CUT Drained, FS=1.34

    PLAXIS Drained 10m CUT

    Incremental Displacements Pattern indicate

    stable slope – no failure mechanism

    46

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    24/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Drained 5m CUT with Internal Drains

    GWT drawndown to below slope face, stable

    situation

    47

    1.5

    1.6

    FS

    Chart 1

    5mCUT Draine...

    5mCUT Undra...

    Drained 5m CUT with Internal Drains

    1.1

    1.2

    1.3

    1.4

    10mCUT Drain...

    5mCUT with In...

    48

    0 1 2 3 4 5

    Displacement [m]

    GWT drawn down to below slope face, stable

    situation, and FS increased to 1.5 cf to 1.02

    without internal drains

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    25/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

     

    Ground Water in Excavation

     Analysis

    49

    Effects of GWT on Excavation Analysis

    For PLAXIS FEM Program:

    • Steady State GWT Calculation i s a separate program from

    Excess Pore Pressure and Consolidation Calculation

    • This can lead to many different ways to include Effects of GWT

    on Excavation Analysis

    • The GWT or Phreatic Surface can be determined by either 

    • Method A – Steady State Flow calculation (Prefered

    50

    • Method B – User Defined Phreatic Surface, ie head is

    constant on a vertical section (to model hydros tatic

    pressure on both sides of excavation)

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    26/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Possible GWT

    Conditions in

    Excavations

    wC ab

    bau    

    2

    2

    51

    wG acb

    ac

    u    

    2

    PLAXIS Model of Full GWTh=Ha (const)

    h=Hb(const)

    Hb

    Ha

    52

    CLOSED FLOW Boundary

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    27/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    28/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    One North Excavation in

    30m Depth of Jurong Formation•By: A/Prof  Harry Tan, National University of  

    Singapore

    •At: ER2010 2‐4 Aug 2010 (Seattle USA)

    55

    Use of Sub-soil Drains to Lower GWT

    for Deep Excavation

    56

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    29/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Full Anchors not possible due to

    site access

    57

    Seepage of GWT through wall

    58

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    30/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    GW Seepage by WSP data-

    Drained/Undrained Conditions

    GW(S)17, 18 & 19

    • GWT drawdown lags behind excavation and drains installation by 1-2 weeks

    • Steady-state seepage appears to be reached in about 2 weeks

    105.000

    110.000

    115.000

    120.000

      n   d   W  a   t  e  r   L  e  v  e   l   (  m   )

    GW(S)18

    GW(S)19

    GW(S)17

    8m

    16m

     

    90.000

    95.000

    100.000

       1   0  -   O  c   t  -   0   3

       1   0  -   N  o  v  -   0   3

       1   0  -   D  e  c  -   0   3

       1   0  -   J  a  n  -   0   4

       1   0  -   F  e   b  -   0   4

       1   0  -   M  a  r  -   0   4

       1   0  -   A  p  r  -   0   4

       1   0  -   M  a  y  -   0   4

       1   0  -   J  u  n  -   0   4

       1   0  -   J  u   l  -   0   4

       1   0  -   A  u  g  -   0   4

       1   0  -   S  e  p  -   0   4

       1   0  -   O  c   t  -   0   4

       1   0  -   N  o  v  -   0   4

       1   0  -   D  e  c  -   0   4

       1   0  -   J  a  n  -   0   5

       1   0  -   F  e   b  -   0   5

       1   0  -   M  a  r  -   0   5

       1   0  -   A  p  r  -   0   5

       1   0  -   M  a  y  -   0   5

       1   0  -   J  u  n  -   0   5

       1   0  -   J  u   l  -   0   5

       1   0  -   A  u  g  -   0   5

       1   0  -   S  e  p  -   0   5

       1   0  -   O  c   t  -   0   5

       1   0  -   N  o  v  -   0   5

       1   0  -   D  e  c  -   0   5

       1   0  -   J  a  n  -   0   6

       1   0  -   F  e   b  -   0   6

    Date

       G  r  o  u

    • 16-Feb-04 Excavate to RL110.5m and Instal l 1st row Drains atRL112.5m

    • 29-Mar-04 Excavate to RL102.5m and Install Drains at RL108.5, 106.5

    and 104.5m• 12-Jul-04 Excavate to RL98.0m and Install Drains at RL100.5m, then

    Excavate to berm top level at RL96.0m

    59

    Drained / Undrained Conditions

    • undrained analysis

    One North - WT7 I19

    after cast base slab and remove lowest anchor 

    0.00

    0 20 40 60 80 100 120Wall Deflection (mm)

    Section 2 - Stage 8

    • – mm

    • drained analysis

    • – 97 mm

    • actual – 85 mm

    5.00

    10.00

    15.00

    20.00

       D  e  p   t   h   (  m   )

    • Drained Analysis

    25.00

    30.00

    35.00

    40.00

    Drained

    Undrained

    I19

    60

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    31/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    32/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    33/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    2b. Influence of Horizontal

    Drainage Systemno drains 4 drains

    117.5m

    6 drains2 drains

    m

    108m

    100m

    65

    2c. Influence of HorizontalDrainage System

    Influence of Hori zontal Drainage System• Wall deformation

    87.5

    92.5

    97.5

    102.5

    107.5

    112.5

    117.5

       R  e   d  u  c  e   d   L  e  v  e   l   (  m   )

    no drains

    6 drains

    4 drains

    2 drains

     

    drains which determine

    height of water level

    behind the wall

    • When no drains

    77.5

    .

    0 100 200 300 400

    Deflection (mm)

    installed, max. walldeflection is greater

    300mm

      Collapse of wall66

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    34/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    3a. NO Drains (swi tch off ) - Wall Collapsed

    Drains in Active Zone

    NOT Activated

    um - tage <

     Anchor Force = 180 Ton >150 Ton (design)

    GWT

    Wall deflect > 300 mm

    67

    3b. WITH Drains (switch on ) – Wall OK

    Drains in Active Zone

     Act ivated

    GWT

    M-Stage =1

     Anchor Force = 110 Ton

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    35/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    4a. Global FOS by c/phi Reduction

      as c,

    Failure with no

    Plastic Hinge,

    FOS=1.75

      as o-

    Plastic Failure

    with Plastic

    Hinge, FOS=1.40

    • Elastic w all excludes possibility of w all plastic hinge; and over-estimateFOS=1.75

    • Allow ing for wall p last ic h inge (Elasto -plast ic w all) gave lower FOS=1.40 and

    smaller soi l yielded zone behind the wall 69

    4b. Wall is Stable with GWT lowered; but FOS by

    c/phi reduction must account for wall plastic moments

    70

    as c a = .

    Plastic DWall FOS=1.40

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    36/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Section 1- Stage 3& 4

    (after installing / preloading of raker anchor)

    102.500

    107.500

    112.500

    117.500

      v  e   l   (  m   )

    Section 1 - Stage 1 & 2

    (after installation of CBPwall)

    102.500

    107.500

    112.500

    117.500

      e   l   (  m   )

    Section 1- Stage 5

    (after excavate to RL102.5m and installation of

    first 2 drains)

    102.500

    107.500

    112.500

    117.500

       (  m   )

    5. Wall Deflection Predictions

    77.500

    82.500

    87.500

    92.500

    97.500

    - 50. 00 0 .0 0 50 .0 0 1 00 .0 0 1 50 .0 0 2 00 .0 0

    Deflection (mm)

       R  e   d  u  c  e   d   L  e  v

    Measured

    Calculated

    77.500

    82.500

    87.500

    92.500

    97.500

    - 5 0. 00 0 .0 0 5 0. 00 1 0 0. 00 1 5 0. 00 2 00 . 00

    Deflection (mm)

       R  e   d  u  c  e   d   L  e  v easure

    Calculated

    77.500

    82.500

    87.500

    92.500

    97.500

    0. 00 50 .00 100.00 150.00 200.00

    Deflection (mm)

       R  e   d  u  c  e   d   L  e  v  e   l

    Measured

    Calculated

    Section 1- Stage 6

    (after excavate to bermtop and installing of last

    2drains and anchors)

    112.5

    117.5

    Sec t ion 1 - Stage 7

    (af t er c ut berm)

    112 .5

    117 .5

    Section 1- Stage 13 & 14

    (after removal of contingencyand raker anchor)

    112.5

    117.5

    77.5

    82.5

    87.5

    92.5

    97.5

    102.5

    107.5

    0.00 50.00 100.00 150.00 200.00

    Deflection (mm)

       R  e   d  u  c

      e   d   L  e  v  e   l   (  m   )

    Measured

    Calculated

    77 .5

    82 .5

    87 .5

    92 .5

    97 .5

    102 .5

    107 .5

    0.00 50.00 100.00 150 .00 200.00

    D ef lect ion (mm)

       R  e   d  u  c  e   d   L  e  v  e   l   (  m   )

    Measured

    Calculated

    77.5

    82.5

    87.5

    92.5

    97.5

    102.5

    107.5

    0 50 100 150 200

    Deflection (mm)

       R  e   d

      u  c  e   d   L  e  v  e   l   (  m   )

    Measured

    Calculated

    71

    Seepage and Excavations

    • GWT lowering by Steady State Seepage

    • GWT lowering by Transient Seepage

    72

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    37/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    GWT lowering SS Seepage

    Excavate 5m, k=1e-5 m/s Excavate 10m, k=1e-5 m/s

    Lower 1.3mLower 3.0m

    73

    Excavate 15m, k=1e-5 m/s

    Lower 5.6m

      s near y

    proportional to

    excavation depth

    GWT lowering SS Seepage

    Excavate 15m, k=1e-5 m/s Excavate 15m, k=1e-7 m/s

    Lower 5.6mLower 5.6m

    For SS case, GWT is not

    74

    Excavate 15m, k=1e-9 m/s

    Lower 5.6m

      .Pattern of GW heads is

    function of geometry only and

    soil layer arrangements

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    38/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    GWT and Transient Seepage

    Excavate 5m, k=1e-5 m/s Excavate 5m, k=1e-7 m/s

    Lower 1.3mLower 0.8m

    Excavate 5m in 30 days.

    75

    Excavate 5m, k=1e-9 m/s

    Lower 0.3m

    Sands, k=1e-5 m/s is like SS

    case

    Clays, k=1e-9 m/s very little

    GWT lowered

    GWT and Transient Seepage

    Excavate 10m, k=1e-5 m/s Excavate 10m, k=1e-7 m/s

    Lower 3.0mLower 1.8m

    Excavate next 5m in 30 days.

    76

    Excavate 10m, k=1e-9 m/s

    Lower 0.3m

    Sands, k=1e-5 m/s is like SScase

    Clays, k=1e-9 m/s very little

    GWT lowered

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    39/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    GWT and Transient Seepage

    Excavate 5m, k=1e-5 m/s Excavate 5m, k=1e-7 m/s

    Lower 5.6mLower 3.6m

    Excavate next 5m in 30 days.

    77

    Excavate 15m, k=1e-9 m/s

    Lower 0.3m

    Sands, k=1e-5 m/s is like SS

    case

    Clays, k=1e-9 m/s very little

    GWT lowered

    Science of Transient Seepage

    • Governing Equations

    • Hydraulic Material Models

    • Boundary Conditions

    78

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    40/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Governing Equations

    Steady-state

    continuity condition

    79

    Governing Equations

    80

    • Need to define two soil properties functions:

    • K as f(S) and Ksat - k function

    • c as f(csat, n, S(p)) - SWCC

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    41/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Governing Equations (FEM)

    at element by element level

    81

    Governing Equations (FEM)

    82

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    42/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Hydraulic Material Model-

    Van Genuchten Model

    83

    Hydraulic Material Model-

    Van Genuchten Model

    84

    • AEV defines the suction value that must be exceeded before air enters the soil pore

    • Clays have very high AEV compared to Sands

    • ga is inversely related to AEV

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    43/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Hydraulic Material Model-

    Van Genuchten Model

    85

    Hydraulic Material Model-

    Van Genuchten Model

    86

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    44/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Hydraulic Material Model-

    Van Genuchten Model

    87

    Hydraulic Material Model-

    Van Genuchten Model

    88

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    45/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    1. Water Table

    P h

    Boundary Conditions

    1

    1

    w

    w

    Ph y

     

    w p w

    2. Inflow

    external x x y yq n q n q 4. Close boundary

    2 3

    4

    89

    3. Outflow

    external x x y yq n q n q

    0 x x y yq n q n

    5. Prescribed heads

    1 2,h h h h

    Boundary Conditions

    6. Well/Drain

    7. Free Seepage

    Q Q

    5

    6

    78

    90

    8. Screen

    0 x x y yq n q n

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    46/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    47/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    48/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    Rapid Drawdown Example – Time Dependent Boundary Conditions

    rom = m o = m n ays

    H=25m

    H=5m

    95

    Rapid Drawdown Example – Time Dependent Boundary Conditions

    rom = m o = m n ays

    H=25m

    H=5m

    96

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    49/51

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    50/51

    AP Harry Tan

    CE5101 Seepage FEM

    SEP 20

    99

    100

  • 8/19/2019 CE5101 Lecture 4 - Seepage Analysis by FEM (SEP 2011)

    51/51