31
1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]

CE 530 Molecular Simulation - eng.buffalo.edu

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CE 530 Molecular Simulation - eng.buffalo.edu

1

CE 530 Molecular Simulation

Lecture 14 Molecular Models

David A. Kofke

Department of Chemical Engineering SUNY Buffalo

[email protected]

Page 2: CE 530 Molecular Simulation - eng.buffalo.edu

2

Review ¡ Monte Carlo

•  ensemble averaging, no dynamics •  easy to select independent variables •  lots of flexibility to improve performance

¡ Molecular dynamics •  time averaging, yields dynamical properties •  extended Lagrangians permit extension to other ensembles

¡ Models •  atomic systems only

hard sphere, square well Lennard-Jones

Page 3: CE 530 Molecular Simulation - eng.buffalo.edu

3

Modeling Molecules

¡ Quantitative calculations require more realistic treatment of molecular interactions

¡ Quantum mechanical origins ¡ Intermolecular forces ¡ Intramolecular forces ¡ Effects of long-range interactions on properties ¡ Multibody interactions

Page 4: CE 530 Molecular Simulation - eng.buffalo.edu

4

Quantum Mechanical Origins

¡ Fundamental to everything is the Schrödinger equation •  •  wave function •  H = Hamiltonian operator

•  time independent form

¡ Born-Oppenheimer approximation •  electrons relax very quickly compared to nuclear motions •  nuclei move in presence of potential energy obtained by solving

electron distribution for fixed nuclear configuration it is still very difficult to solve for this energy routinely

•  usually nuclei are heavy enough to treat classically

H it

∂ΨΨ =∂

h( , , )R r tΨ

Nuclear coordinates

Electronic coordinates

H EΨ = Ψ

22 imH K U U= + = − ∇ +∑h

Page 5: CE 530 Molecular Simulation - eng.buffalo.edu

5

Force Field Methods

¡ Too expensive to solve QM electronic energy for every nuclear configuration

¡ Instead define energy using simple empirical formulas •  “force fields” or “molecular mechanics”

¡  Decomposition of the total energy

¡ Force fields usually written in terms of pairwise additive interatomic potentials •  with some exceptions

(1) (2) (3)( ) ( ) ( , ) ( , , )Ni i j i j ki i j i i j i k jU u u u< < <= + + +∑ ∑ ∑ ∑ ∑ ∑r r r r r r r K

Single-atom energy (external field)

Atom-pair contribution 3-atom contribution

Neglect 3- and higher-order terms

Page 6: CE 530 Molecular Simulation - eng.buffalo.edu

6

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 7: CE 530 Molecular Simulation - eng.buffalo.edu

7

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 8: CE 530 Molecular Simulation - eng.buffalo.edu

8

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 9: CE 530 Molecular Simulation - eng.buffalo.edu

9

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 10: CE 530 Molecular Simulation - eng.buffalo.edu

10

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 11: CE 530 Molecular Simulation - eng.buffalo.edu

11

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Page 12: CE 530 Molecular Simulation - eng.buffalo.edu

12

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

Repulsion

Page 13: CE 530 Molecular Simulation - eng.buffalo.edu

13

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

Repulsion

Page 14: CE 530 Molecular Simulation - eng.buffalo.edu

14

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

- + - +

Repulsion Attraction

Page 15: CE 530 Molecular Simulation - eng.buffalo.edu

15

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

- + - +

Repulsion Attraction

Page 16: CE 530 Molecular Simulation - eng.buffalo.edu

16

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

- + - +

Repulsion Attraction

- +

Page 17: CE 530 Molecular Simulation - eng.buffalo.edu

17

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

- + - +

Repulsion Attraction

+ - +

+ - +

u(2)

u(2)

u(N)

Page 18: CE 530 Molecular Simulation - eng.buffalo.edu

18

Contributions to Potential Energy

¡ Total pair energy breaks into a sum of terms ( )N str bend tors cross vdW el polU U U U U U U U= + + + + + +r

Intramolecular only

¡  Ustr stretch

¡  Ubend bend

¡  Utors torsion

¡  Ucross cross

¡  UvdW van der Waals

¡  Uel electrostatic

¡  Upol polarization

Mixed terms

- + - +

Repulsion Attraction

+ - +

+ -

u(2)

u(2)

u(N)

Page 19: CE 530 Molecular Simulation - eng.buffalo.edu

19

Stretch Energy

¡ Expand energy about equilibrium position

¡ Model fails in strained geometries •  better model is the Morse potential

22

12 12 12 12 12 122( ) ( ) ( ) ( )o o

o o o

r r r r

dU d UU r U r r r r rdr dr= =

= + − + − +K

minimum define 2

12 12 12( ) ( )oU r k r r= −

(neglect)

harmonic

( )122

12( ) 1 rU r D eα= −

dissociation energy force constant

250

200

150

100

50

0

Ene

rgy

(kca

l/mol

e)

0.80.60.40.20.0-0.2-0.4Stretch (Angstroms)

Morse

Page 20: CE 530 Molecular Simulation - eng.buffalo.edu

20

Bending Energy

¡ Expand energy about equilibrium position

•  improvements based on including higher-order terms ¡ Out-of-plane bending

22

2( ) ( ) ( ) ( )o o

o o odU d UU Ud dθ θ θ θ

θ θ θ θ θ θθ θ= =

= + − + − +K

minimum define 2( ) ( )oU kθ θ θ= −

(neglect)

harmonic

θ

χ 2( ) ( )oU kχ χ χ= −

u(4)

Page 21: CE 530 Molecular Simulation - eng.buffalo.edu

21

Torsional Energy

¡ Two new features •  periodic •  weak (Taylor expansion in f not appropriate)

¡ Fourier series

•  terms are included to capture appropriate minima/maxima depends on substituent atoms

–  e.g., ethane has three mimum-energy conformations •  n = 3, 6, 9, etc.

depends on type of bond –  e.g. ethane vs. ethylene

•  usually at most n = 1, 2, and/or 3 terms are included

φ

1( ) cos( )nnU U nφ φ==∑

Page 22: CE 530 Molecular Simulation - eng.buffalo.edu

22

Van der Waals Attraction

¡ Correlation of electron fluctuations ¡ Stronger for larger, more polarizable molecules

•  CCl4 > CH4 ; Kr > Ar > He ¡ Theoretical formula for long-range behavior

¡ Only attraction present between nonpolar molecules •  reason that Ar, He, CH4, etc. form liquid phases

¡ a.k.a. “London” or “dispersion” forces

- + - + - + - +

86 ( )att

vdWCU O rr

−+:

Page 23: CE 530 Molecular Simulation - eng.buffalo.edu

23

Van der Waals Repulsion ¡ Overlap of electron clouds ¡ Theory provides little guidance on form of model ¡ Two popular treatments

inverse power exponential typically n ~ 9 - 12 two parameters

¡ Combine with attraction term •  Lennard-Jones model Exp-6

repvdW n

AUr

:rep BrvdWU Ae−:

12 6A CUr r

= − 6Br CU Ae

r−= −

a.k.a. “Buckingham” or “Hill”

10

8

6

4

2

0

2.01.81.61.41.21.0

LJ Exp-6

Exp-6 repulsion is slightly softer

20

15

10

5

0

x103

8642

Beware of anomalous Exp-6 short-range attraction

Page 24: CE 530 Molecular Simulation - eng.buffalo.edu

24

Electrostatics 1.

¡ Interaction between charge inhomogeneities

¡ Modeling approaches •  point charges •  point multipoles

¡ Point charges •  assign Coulombic charges to several

points in the molecule •  total charge sums to charge on

molecule (usually zero) •  Coulomb potential

very long ranged 0

( )4i jq q

U rrπε

=

−++

1.5

1.0

0.5

0.0

-0.5

-1.0

4321

Lennard-Jones Coulomb

Page 25: CE 530 Molecular Simulation - eng.buffalo.edu

25

Electrostatics 2. ¡ At larger separations, details of charge distribution are less

important ¡ Multipole statistics capture basic features

•  Dipole •  Quadrupole •  Octopole, etc.

¡ Point multipole models based on long-range behavior •  dipole-dipole

•  dipole-quadrupole

•  quadrupole-quadrupole

!µ = qirii∑

Q = qiririi∑Vector

Tensor

+−

+− + −

0, 0Qµ ≠ =

0, 0Qµ = ≠

µQ

µ Q[ ]1 2

1 2 1 23 ˆ ˆˆ ˆ ˆ ˆ3( )( ) ( )ddu rµ µ µ µ µ µ= − ⋅ ⋅ − ⋅r r

( )21 21 2 1 2 24

3 ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) 5( ) 1 2( )( )2dQQu Q Qr

µ µ µ µ⎡ ⎤= ⋅ ⋅ − − ⋅ ⋅⎣ ⎦r r r

2 2 2 2 21 21 2 12 1 2 1 2 125

3 1 5 5 2 35 204QQQQu c c c c c c c cr

⎡ ⎤= − − + + −⎣ ⎦

Axially symmetric quadrupole

Page 26: CE 530 Molecular Simulation - eng.buffalo.edu

26

Molecule µ, Debye Q, B α, A3

He 0 0 0.206Ar 0 0 1.642O2 0 -0.4 1.48N2 0 -1.4 1.7Cl2 0 4.2 4.6HF 1.8 2.6 0.8CO2 0 -4.3 2.9H2O 1.85 +1.97 (xx)

-1.89 (yy)-0.08 (zz)

1.5 (xx)1.43 (yy)1.45 (zz)

CH4 0 0 2.6CCl4 0 0 11.2C6H6 0 -9.5 10.6NH3 1.5 -2.3 2.22C2H6 0 -1.2 4.4

Electrostatics 3. Some Experimental/Theoretical Values

Page 27: CE 530 Molecular Simulation - eng.buffalo.edu

27

Polarization

¡ Charge redistribution due to influence of surrounding molecules •  dipole moment in bulk different

from that in vacuum

¡ Modeled with polarizable charges or multipoles ¡ Involves an iterative calculation

•  evaluate electric field acting on each charge due to other charges •  adjust charges according to polarizability and electric field •  re-compute electric field and repeat to convergence

¡ Re-iteration over all molecules required if even one is moved

+ -

+ - +

Page 28: CE 530 Molecular Simulation - eng.buffalo.edu

28

Explicit Multibody Interactions

¡ Axilrod-Teller •  consider response of atoms 2 and 3 to fluctuation in dipole

moment of atom 1 •  average over all fluctuations in 1

( )1 2 31 2 3 1 2 33 3 3

12 23 13

3( , , ) 3cos cos cos 12Eur r rα α α θ θ θ= +r r r

1

2 3

u(3)

Page 29: CE 530 Molecular Simulation - eng.buffalo.edu

29

Unlike-Atom Interactions

¡ “Mixing rules” give the potential parameters for interactions of atoms that are not the same type •  no ambiguity for Coulomb interaction •  for effective potentials (e.g., LJ) it is not clear what to do

¡ Lorentz-Berthelot is a widely used choice

¡ Treatment is a very weak link in quantitative applications of molecular simulation

0( )

4i jq q

U rrπε

=

112 1 22

12 1 2

( )σ σ σ

ε ε ε

= +

=

Page 30: CE 530 Molecular Simulation - eng.buffalo.edu

30

Common Approximations in Molecular Models ¡ Rigid intramolecular degrees of freedom

•  fast intramolecular motions slow down MD calculations ¡ Ignore hydrogen atoms

•  united atom representation ¡ Ignore polarization

•  expensive n-body effect ¡ Ignore electrostatics ¡ Treat whole molecule as one big atom

•  maybe anisotropic ¡ Model vdW forces via discontinuous potentials ¡ Ignore all attraction ¡ Model space as a lattice

•  especially useful for polymer molecules

Qualitative models

Page 31: CE 530 Molecular Simulation - eng.buffalo.edu

31

Summary

¡ Intermolecular forces arise from quantum mechanics •  too complex to include in lengthy simulations of bulk phases

¡ Empirical forms give simple formulas to approximate behavior •  intramolecular forms: bend, stretch, torsion •  intermolecular: van der Waals, electrostatics, polarization

¡ Unlike-atom interactions weak link in quantitative work