Cathy 25th Nov Imperial Vf

Embed Size (px)

Citation preview

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    1/19

    25th November 200925th November 2009

    Physical & Theoretical Chemistry

    Cathy Rushworth

    Supervisor: Dr. Claire Vallance

    Direct absorption measurementsusing fibre-loop cavity ring-downspectroscopy

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    2/19

    Page 2Page 2

    Outline

    Absorption spectroscopy

    Results so far

    Challenges ahead

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    3/19

    Page 3

    Absorption spectroscopy

    Beer-Lambert Law: eI

    I=

    0

    cl

    Usually the path length is ~ 1 cm, but in a chip it can be 1000 times smaller How can we make absorption measurements on sample volumes this

    small?

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    4/19

    Page 4Page 4

    CRDS with mirrors

    )1( clRcd

    +

    =

    In

    tens

    ity

    Time

    OKeefe and Deacon 1988

    No absorberAbsorber present

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    5/19

    Page 5Page 5

    CRDS with fibres

    Loock 2002

    Fiberguide Industries, Inc.

    1

    2

    n1sin1 =n2sin2Core RI = 1.457Cladding RI = 1.439

    )( clLc

    d

    +

    =

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    6/19

    Page 6

    Fibre signal

    Light travels in the core and the cladding

    In

    tens

    i ty

    Time

    Cladding

    Cladding modes

    Core modes

    Start recording signalafter this point

    Core

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    7/19

    Page 7

    Sample measurements

    Direct absorption

    Evanescent wave absorption

    HF etching

    Taper

    CladdingCladding

    CoreCore

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    8/19

    Page 8

    Optical set-up

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    9/19

    Page 9

    Sample introduction

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    10/19

    Page 10

    Fibre-loop ring-downs

    Water = 224 ns

    R6G 0.1125 mM =181 ns

    50 um core diameter fibre, l = 24 um,

    0.5 pL sample volume!

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    11/19

    Page 11

    End separation in water

    200 um

    105 um

    100 um50 um

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    12/19

    Page 12

    SFS100

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    13/19

    Page 13

    Finding optimum l and d for SFS100

    Waechter 2009

    For a given abs C,

    optimise l and d tomaximise sensitivity

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    14/19

    Page 14Page 14

    Lensing

    100 um

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    15/19

    Page 15Page 15

    Preliminary results SFS50, l = 24 um, d = 4 m

    Probed volume ~ 0.5 pL50 uM R6G: Detect ~ 2 fmoles, ~ 1 billion molecules

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    16/19

    Page 16

    Improvements

    Minimize loop losses

    Separate core and cladding modes

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    17/19

    Page 17

    Contact HF etching in situ

    Non contact

    Remembering Fibre alignment, Limit to end separation, RI (core) = 1.457

    Page 17

    Options for fibre chip coupling

    Fibre ends

    Chip

    Chip

    Uncleaved fibre

    Chip

    Fibre ends

    Fibre ends

    Fibre end

    Chip Observationwindows

    Plan view

    Channel HFflow

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    18/19

    Page 18

    Important considerations

    Fibre chip coupling parameters

    End separation tolerances

    Systems to study

    Data acquisition rate?

  • 8/14/2019 Cathy 25th Nov Imperial Vf

    19/19

    Page 19

    Acknowledgements

    Thank you for listening

    Thank you to Claire, Joao, Bobby and Joanna

    Questions?