46
Digital Modulation Technique Coherent Non - Coherent Binary (m) = 2 M - ary Hybrid * ASK M-ary ASK M-ary APK * FSK M-ary FSK M-ary QAM * PSK M-ary PSK (QPSK) Binary (m) = 2 M - ary * ASK M-ary ASK * FSK M-ary FSK * DPSK M-ary DPSK Digital modulation techniques

carriermodn2

Embed Size (px)

Citation preview

Page 1: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 1/46

Digital Modulation Technique

Coherent Non - Coherent

Binary

(m) = 2

M - ary Hybrid

* ASK M-ary ASK M-ary APK* FSK M-ary FSK M-ary QAM* PSK M-ary PSK

(QPSK)

Binary

(m) = 2

M - ary

* ASK M-ary ASK* FSK M-ary FSK* DPSK M-ary DPSK

Digital modulation techniques

Page 2: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 2/46

Amplitude Shift Keying (ASK)

l Pulse shaping can be employed to remove spectral spreading.

l ASK demonstrates poor performance, as it is heavily affectedby noise and interference.

l Long string of zeros causes synchronization loss.

BasebandData

ASK modulatedsignal

A cos wct A cos wct0 0

Page 3: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 3/46

Phase Shift Keying (PSK)

l Binary Phase Shift Keying (BPSK) demonstrates better performance

than ASK and FSK.l PSK can be expanded to a M-ary scheme, employing multiple phases

and amplitudes as different states.

l Filtering can be employed to avoid spectral spreading.

BasebandData

Binary PSK modulated

signal

s1 s1s0 s0

where s0 = -A cos wct and s1 = A cos wct

Page 4: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 4/46

Page 5: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 5/46

Binary Phase Shift Keying (BPSK)

Page 6: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 6/46

Signal constellation for binary PSK modulation. 

Page 7: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 7/46

Probability of error using dmin

For binary problems detection in Gaussiannoise, Q(x) function can be used.

Page 8: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 8/46

Page 9: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 9/46

P(ε) = Q(d2min /2No)

Since σ2 = No /2 

Page 10: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 10/46

Prob. of error for BPSK

Page 11: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 11/46

Simple scheme for generating BPSK modulated signal. 

Page 12: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 12/46

 A scheme for coherent demodulation of BPSK modulated signal 

 following concept of optimum correlation receiver  

Page 13: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 13/46

Power Spectrum for BPSK Modulated Signal

Page 14: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 14/46

Quadrature/Quarternary phase shift keying (QPSK)

QPSK is effectively two independent BPSK systems (I and Q), andtherefore exhibits the same performance but twice the bandwidth

efficiency.QPSK can be filtered using raised cosine filters to achieve excellent outof band suppression.

Large envelope variations occur during phase transitions, thus requiring

linear amplification.

Cos Wc t

900

Odd Data

Even Data

(NRZ)

(NRZ)

QPSK

Q-Channel

I-Channel

Q

(-1,-1)

(-1,1)

I

(1,1)

(1,-1)

Wc = Carrier Frequency, I = In phase channel, Q = Quadrature channel

Page 15: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 15/46

QPSK- Features

• Very important for developing concepts of two

dimensional I-Q modulations as well as for its

practical relevance.

• QPSK is an expanded version from binary PSK where

in a symbol consists of two bits and two

orthonormal basis functions are used.

• A group of two bits is often called a ‘dibit’. So, 

four dibits are possible. Each symbol carries same

energy.

Page 16: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 16/46

Page 17: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 17/46

Page 18: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 18/46

Page 19: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 19/46

Page 20: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 20/46

410)2sin(]4 / )12sin[(2)2cos(]4 / )12[(2)(

410]4 / )12(2[2

)(

toiT t t  f iT  E t  f iCos

T  E t s

toiT t it  f CosT 

 E t s

cci

ci

    

  

114

72cos

2)(

014

52cos

2)(

004

32cos2)(

104

2cos2

)(

3

2

1

dibit input  for t T 

 E t 

dibit input  f or t T 

 E t 

dibit input  f or t T 

 E t 

bit diinput  f or t T 

 E t 

 f S

 f S

 f S

 f S

ct 

c

c

c

  

  

  

  

In QPSK the carrier is given by

The transmitted signals are given by

T t t t 

T t t t 

 f T 

 f T 

cb

cb

02sin2

)(

02cos2

)(

2

1

 

 

 

 

The basic functions

Th f i d h i d i l d fi d b

Page 21: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 21/46

4,3,2,1

412sin

412cos

i

i E 

i E 

Si

 

 

There are four message points and the associated signal vectors are defined by

Input

dibit

Phase of QPSK

signal(radians) 

Coordinates of message

points 

Si1  Si2 

10 

00 

01 

11 

4

 2

 E 2

 E 

4

3  2 E 

2 E 

4

5 2

 E 2

 E 

4

2 E 2

 E 

QPSK W f

Page 22: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 22/46

QPSK Waveform

Page 23: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 23/46

QPSK Transmitter 

QPSK Receiver 

Probabilit of error in QPSK(coherent)

Page 24: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 24/46

Probability of error in QPSK(coherent)

► A QPSK system is equivalent to two coherent binary PSK systems working in parallel and

using carriers that are in-phase and quadrature.

►The in-phase channel output x1 and the Q-channel output x2 may be viewed as the

individual outputs of the two coherent binary PSK systems.

The signal energy per bit is 2 E  and the noise spectral density is

2

0 N 

The average probability of bit error in each channel of the coherent QPSK

 N 

 N 

 E erfc

 E  E 

 E 

erfcP

2 0

0

1

2

1

22

21

 No

 E erfc

 No

 E erfc

 No

 E erfc

PPC 

24

1

2

1

22

11

1

2

2

21

Page 25: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 25/46

 No

 E erfc

 No

 E erfc

PP C e

24

1

2

1

2

In the region where 12

o

 N 

 E 

  We may ignore the second term and so the approximate formula for theaverage probability of symbol error for coherent QPSK system is

 No

 E erfcPe 2

Page 26: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 26/46

BFSK

01

b E S

b E S

0

2

 

b

b

T t t  f CosT 

t  022

)( 11   

b

b

T t t  f CosT 

t  022

)( 22   

for symbol 1

for symbol 0

t   f  CosT 

 E t S

b

b

112

2)(  

t  f CosT 

 E t S

b

b22 2

2)(  

Page 27: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 27/46

bT 

dt t t  x x0

11)()(  

bT 

dt t t  x x0

22 )()(  

BFSK Tx

BFSK Rx

l = x1 – x2 

E

Page 28: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 28/46

b

b

 E 

 E 

 x E 

 x E 

l E 

0

111

21

Similarly for ‘0’ transmissionb E 

l E 

0

When symbol ‘1’ was transmitted x1 and x2 has mean value of 0 andb

 E  respectively.

0

21][][][

 N 

 xVar  xVar lVar 

20 N 

2

0 N 

Assuming zero mean additive white Gaussian noise with input PSD with variance

.

dl

 N 

 E l

 N 

PPb

ee

0 0

2

0

0

2

)(exp

2

1)0 / 1(

  

02 N 

 E l Z 

b

0

2

2

0

22

1

)exp(1

0

 N 

 E erfc

dz zP

b

 N 

 E 

e

b

   

Page 29: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 29/46

Using dmin Pe expression,

d2min = E + E = 2E = A2T

Eb

= (E + E) / 2 = E = A2T/2 

Similarly

0

122

1

 N 

 E erfcP b

e

The total probability of error = )1 / 0()0 / 1([21 eee PPP

Assuming 1’s & 0’s with equal probabilities

][2

110 ee PP

0

22

1

 N 

 E erfcP b

ePe=

P(ε) = Q(d2min /2No)

P(ε) = Q(A2T /2No) = Q(Eb /N0) 

Page 30: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 30/46

Non- Coherent FSK Demodulation

Input Binary Sequence {bK} 1 0 0 1 0 0 1 1

Differentially Encoded 1 sequence

{dK}

1 0 1 1 0 1 1 1

Transmitted Phase 0 0 Π 0 0 Π 0 0 0

Received Sequence

(Demodulated Sequence)

1 0 0 1 0 0 1 1

Page 31: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 31/46

Differential Phase Shift Keying [DPSK](Non-coherent PSK)

DPSK Transmitter

bd bd d  k k k k k  11

Input Binary Sequence {bK} 1 0 0 1 0 0 1 1

Differentially Encoded 1

sequence {dK}

1 0 1 1 0 1 1 1

Transmitted Phase 0 0 Π 0 0 Π 0 0 0

Received Sequence

(Demodulated Sequence)

1 0 0 1 0 0 1 1

Page 32: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 32/46

If correlator output is +ve -- A decision is made in favour of symbol ‘1’ If correlator output is -ve  --- A decision is made in favour of symbol ‘0’ 

DPSK Receiver

Relation b/w erfc and Q functions

Page 33: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 33/46

u

dz zuerf 0

2 )exp(2

)( 

u

dz zuerfc )exp(2

)( 2

 

erfc(u) = 1 – erf(u)

dx x

vQv

 

  

 

2exp

2

1)(

2

 

  

  

221)( verfcvQ

)2(2 uQuerfc

Relation b/w erfc and Q functions

Example 1.

Page 34: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 34/46

Example 1.Binary data is transmitted over an RF band pass channel with a usable bandwidth of10 MHz at a rate of (4.8) (106) bits/sec using an ASK signaling method. The carrieramplitude at the receiver antenna is 1 mv and the noise power spectral density at thereceiver input is 10-15 watt/Hz. Find the error probability of a coherent and non

coherent receiver.

Solution: For Coherent ASK,

).10(226

 / 102 / 

8.4 / 10,1;4

7

15

6

2

 

 

 

 

QPe

 Hzwatt 

T mv AT  A

QP b

b

e

 

 

,)16 /(exp2

1 2 be T  AP

For Non-Coherent ASK, 

= 0.0008

Page 35: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 35/46

Minimum shift keying

• Continuous Phase Frequency Shift Keying [CPFSK] )

0)0(2cos2

1)0(2cos2

)(

2

1

symbol f or t 

symbol f or t 

t S

 f T  E 

 f T 

 E 

b

b

b

b

  

  

)0(2cos2

)(    t t S f T 

 E c

b

b

ratiodeviationtheh

 frequencycarrier theWhere

T h

h

h

bygivenares frequencied transmitteThe

 f 

 f  f 

 f  f  f 

T  f  f 

T  f  f 

 f  f 

T T 

h

c

b

c

bc

bc

b

b

&

)(

)(2 / 1

&

0)0()(

21

21

2

1

21

2

2

   The phase θ(t) is a continuous function of time:

Th i ti f h θ(t) ith ti t f ll th i ti f f

Page 36: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 36/46

The variation of phase θ(t) with time t follows a path consisting of sequence ofstraight lines, the slope of which represent frequency change.

“Phase tree”plot showing possible paths starting from time t=0.

Page 37: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 37/46

When h= ½ the frequency deviation equals half the bit rate. 

This is the minimum frequency difference (deviation) that allows the two FSK

signals representing symbol ‘1’ & ‘0’. 

A CPFSK signal with a deviation ratio of one- half is referred to as “minimum

shift keying”[MSK]. 

Deviation ratio h is measured with respect to the bit rate 1/Tbat t =Tb

0

1

)0()( Symbol for h

Symbol for h

T b  

 

  

Page 38: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 38/46

Phase Trellis, for sequence 1101000 

Page 39: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 39/46

 

With deviation ratio h=1/2,

b

b

T t t T 

t  02

)0()(    

)2()]([2

)2()]([2

)( t  f Sint SinT 

 E t  f Cost Cos

 E t s

c

b

bc

b

b     

In terms of In phase and Quadrature Components,

+ Sign corresponds to symbol 1- Sign corresponds to symbol 0

In- phase components

bb

bb

b

bb

b

b

b

T t T t T 

CosT 

 E 

t T 

CosCosT 

 E 

t CosT 

 E t s

 

  

 

 

  

 

2

2

2])0([

2

])([2

)(1

 

  

 

For the interval of 

consists of half cosine pulse

bb T t T 

+ Sign corresponds to θ(0) =0- Sign corresponds to θ(0) = п 

Page 40: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 40/46

Quadrature components 

For the interval of 

consists of half sine pulsebT t  20

b

bb

b

b

b

b

b

b

bQ

T t t T T 

 E 

t T 

CosT SinT 

 E 

t SinT 

 E t s

202

sin2

2])([

2

])([2)(

 

  

 

 

  

 

 

  

 

+ Sign corresponds to θ(Tb) =п /2

- Sign corresponds to θ(Tb) = -п /2

Page 41: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 41/46

Since the phase states θ(0) and θ(Tb) can each assume one of the two

possible values, any one of the four possibilities can arise

bbc

bb

T t T t  f Cost T 

CosT 

t   

  

  )2(

2

2)(1  

   bc

bb

T t t  f Sint T 

SinT 

t  20)2(2

2)(2

 

  

   

  

bbc

bb

T t T t  f Cost T 

CosT 

t   

  

  )2(

2

2)(1  

  

bc

bb

T t t  f Sint T 

SinT 

t  20)2(2

2)(2

 

 

 

   

  

We may express the MSK signal in the form

Page 42: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 42/46

We may express the MSK signal in the form

bT t t st st s 0)()()(

2211  

bbb

T t T Cos E 

dt t t ssb

b

)0(

)()(11

 

 

bbb

T t T Sin E 

dt t t ssb

b

20)(

)()(

2

0

22

 

 

Signal spacediagram of MSKsystem

Sequence and waveforms for MSK signal

Page 43: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 43/46

Sequence and waveforms for MSK signal

Page 44: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 44/46

For AWGN Channel, x(t) = s(t) + w(t)

bb

T t T ws

dt t t  x xb

b

11

11)()(  

The projection of the received signal x(t) onto the reference signal )(1 t   is

)(2 t  Similarly, the projection of the received signal x(t) onto the reference signal is

b

T t ws

dt t t  x xb

20

)()(

22

2

0

22

 

2)(

^    bT 

2

)(^    bT 

If x2>0, the receiver chooses the estimate

. If, on the other hand, x2<0, it chooses the estimate

.

Page 45: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 45/46

• To reconstruct the original binary sequence, weinterleave the above two sets of phasedecisions,

If we have the estimates and ,or alternatively if we have the estimates

and , the receiver makes a final decisionin favor of symbol 0.

If we have the estimates and ,

or alternatively if we have the estimates

and , the receiver makes a finaldecision in favor of symbol 1.

0)0(^

 2

)(

^    bT 

0)0(^

 

   )0(^

2)(

^     bT 

2)(

^   

bT 

0)0(^

 

2)(

^

    bT 

Page 46: carriermodn2

8/2/2019 carriermodn2

http://slidepdf.com/reader/full/carriermodn2 46/46

T n

b

4f c

T b4

1

T b2

1

T b2

1

2

1

2

2

2

2

2

1

h for h

or h

hor 

h

 R f T 

 f  f 

 R f 

T  f  f 

bC b

c

bC bc