Carburetion and Fuel Injectors

  • Upload
    alagurm

  • View
    243

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Carburetion and Fuel Injectors

    1/22

    1

    1

    Internal combustion Engines:

    Carburetor, Fuel injection, valve timing

    Dr. Primal Fernando

    [email protected]: (081) 2393608

    CarburetorsandFuelinjection Fuelinjection isasystemformixingfuelwithairinaninternalcombustion

    engine.Ithasbecometheprimaryfueldeliverysystemusedingasolineautomotiveengines,havingalmostcompletelyreplacedcarburetorsinthelate

    1980s.

    ThecarburetorwasinventedbyKarlBenz(founderofMercedesBenz)in1885andpatentedin1886.

    Carburetorsweretheusualfueldeliverymethodforalmostallgasoline(petrol)

    2

    fuelledenginesupuntilthelate1980s,whenfuelinjectionbecamethepreferredmethodofautomotivefueldelivery.IntheU.S.market,thelastcarburetedcarswerethe1990Oldsmobile CustomCruiser,BuickEstateWagon,andSubaruJusty,andthelastcarburetedlighttruckwasthe1994Isuzu.Elsewhere,Ladacarsusedcarburetorsuntil1996.Amajorityofmotorcyclesstillusecarburetorsduetolowercostandthrottleresponseproblemswithearlyinjectionsetups,butasof2005,manynewmodelsarenowbeingintroduced withfuelinjection.Carburetorsarestillfoundinsmallenginesandinolderorspecializedautomobiles,suchasthosedesignedforstockcarracing.

    Afuelinjectionsystemisdesignedandcalibratedspecificallyforthetype(s)offuelitwillhandle.Mostfuelinjectionsystemsareforgasolineordieselapplications.

    3

    GasReviewNovember1913

    Usedontractors,boats,andstationaryengines,includingtheWaterlooBoyandModelDtractors

    GasReviewSeptember1917

    4

    Well,letsseeifwecanfigureitout

    CarburetorTheory

    ItsallduetoAirPressure(orlackthereof)

    Closetosealevelpressureis14.7psi

    Airhasweight 88lbsina12x12x8ftroom

    Vacuumisapressurelessthan14.7psi

    Oftenmeasuredininchesofmercury

    5

    14.7psi~30inHg

    Asengineruns,intakestrokescreate

    vacuumorlowerairpressureinmanifold

    Normal~10psi(~20inHg)

    Withthrottleplateopen,carburetorthroat

    exposedtomanifoldpressure

    CarburetorTheory

    Venturi

    Whatisit?

    WindblowingindowntownChicago

    alwaysstrongerinthesmallerareasbetween2

    6

    buildings Rivercurrents

    alwaysfasterinanarrower,shallowerplacethandeep,widepools

  • 7/29/2019 Carburetion and Fuel Injectors

    2/22

    2

    CarburetorTheory

    7

    CarburetorsoperateontheventurieffectTheventuriisanarrowingofthebore

    CarburetorTheory

    Whatcausesairflowthroughcarburetor?

    Intakestrokeofpistoncreatesvacuum

    Intakevalveopen,transmitsvacuumtothrottleplate

    Positionofthrottleplatedeterminesairflow

    8

    Open fullflow lowmanifoldvacuum

    Air(at~atmosphericpressure)flowsfromair cleanerside,throughventuri,pastthrottleplate,throughmanifoldandintakevalve,intocylinder

    ModelArunningat975rpmflowsabout70cfm (cubicfeetperminute)

    Asairflowsthroughventuri,pressuredecreasesinventuri BernoullisLawtellsusasAreadecreases,velocityincreasesand Asvelocityincreases,pressuredecreases

    CarburetorTheory

    9

    rpressureon ue n ow sa ways~a mosp er cAspressuredifferencebetween1)fuelinbowland2)attipofnozzle(locatedinventuri)increases,fuelflowincreasesfromnozzle Throttleopens,moreairflow,greater P,morefuelflow Throttlecloses,lessairflow,less P,lessfuelflow

    Importantfactors AmountofvacuumcreatedbyintakestrokeLessvacuumif Intakevalveguidesleakair Exhaustvalveleaksair

    CarburetorTheory

    10

    Pistonringsleakair Manifoldgasketleaksair PositionofthrottleplateDeterminesairflowthroughcarburetor DeterminesdifferenceinpressureonfuelinbowlandattipofnozzleinventuriGreaterdifference morefuelflow

    CarburetorTheory

    Tofurtherregulatethemixture,twoairregulatorsorbutterflyvalvesarealsoadded:

    Theserestricttheamountofairflowthroughthecarburetoreithermanuallyorautomatically.

    11

    sac on ecreases epoweran spee an therichnessofthemixturewithintheengine.

    Throttlevalvesrestrictairmovementatallspeedsandaregenerallymanuallycontrolled.

    Chokevalvesrestrictairmovementatstartuptoallowforarichermixtureandcanbemanuallyorautomaticallyengaged.

    Carburetortypes

    VenturitypeCarburetor

    P+1/2V2 =Constant

    Bernoulli Effect:

    Valve StemFuel Inlet

    Throttle Plate

    Air/Fuel Mixture To Engine

    Atomized Fuel

    12

    Ref. Obert

    Constant level ismaintained in bowl -as

    float moves down,valve stem moves down,allowing more fuel intobowl, float moves up andcloses valve

    Float

    Metering Orifice

    Choke Plate

    FuelNozzle

    Inlet Air

    Bowl

    Venturi

  • 7/29/2019 Carburetion and Fuel Injectors

    3/22

    3

    % BoreOpen0 0.0

    10 1.514 3.017 4.424 8.630 13.4

    13

    33 16.141 25.045 29.360 50.075 75.084 90.090 100

    %Boreopen= b(1 cos)x100BoreOpenisdifferencebetween

    boresizeandareaofthrottleplate

    b=radiusofboresize

    TheThrottle

    Thethrottleisarounddiscmountedonashaftbeyondthemainfuelnozzleinthe

    14

    carburetor.

    Itregulatestheamountofairfuelmixtureenteringthecylinder.

    TheChoke

    Thechokeisarounddiscmountedonashaftlocatedattheintakeendofthecarburetor.

    Sincecoldfuelishardtovaporize,thechokeisusedduringcoldenginestartstoprovidearichmixturetothe

    15

    car uretorinor ertogett eenginestarte .

    NaturalDraftCarburetor

    Thiscarburetorisusedwherethereislittlespaceontopofthe

    16

    engine. Theairhorizontallyintothemanifold.

    UpdraftCarburetors

    Thistypeisplacedlowontheengineanduseagravityfedfuelsupply. Inother

    17

    words,thetankisabovethecarburetorandthefuelfallstoit.

    DowndraftCarburetors

    Thiscarburetoroperateswithlowerairvelocitiesandlargerpassages. Thisisbecausegravityassiststheairfuelmixtureflowtothecylinder.

    18

    Thedowndraftcarburetorcanprovidelargevolumesoffuelwhenneededforhighspeedandhighpoweroutput.

  • 7/29/2019 Carburetion and Fuel Injectors

    4/22

    4

    DiaphragmCarburetors

    Thistypedoesnothaveafloat,ratherthedifferencebetweenatmosphericpressureandthevacuumcreatedintheengine

    ulsatesaflexibledia hra m.

    19

    Thepulsationofthediaphragmtakesplaceoneveryintakeandcompressionstroke.

    MixtureRequirements

    Engineinductionandfuelsystemmustprepareafuelairmixturethatsatisfiestherequirementsoftheengineoveritsentireoperatingregime.

    20

    gives

    1. requiredpoweroutput

    2. withlowestfuelconsumption

    3. consistentwithsmoothandreliableoperation

    21 22

    CalculationofAirfuelRatio

    ot

    2out

    outoutoutoutin

    2in

    inininin gZ2

    hmWQgZ2

    hmWQ

    in

    2

    inininot

    2

    outoutoutinoutoutin gZ

    2hmgZ

    2hmWWQQ

    Energybalanceforasteadyflowsystem

    23

    Generalform

    in

    2in

    ininot

    2out

    outout gZ2

    hmgZ2

    hmWQ

    Note:Intheaboveequation,heatinputtothesystemandworkoutputfromthesystemispositive(+)andheatoutputfromthesystemandworkinputtothesystemisnegative().

    CalculationofAirfuelRatio

    in

    2in

    ininot

    2out

    outout gZ2

    hmgZ2

    hmWQ

    in

    ininot

    outout gZhgZhwq

    22

    22

    Applyingthesteadyflowenergyequationto

    24

    1

    21

    12

    22

    222

    gZhgZhwq

    Here,q andwaretheheatandworktransfersfromtheentrancetothethroatandh andv standforenthalpyandvelocityrespectively.Ifweassumereversibleadiabaticconditions,andthereisnoworktransfer,q=0,w=0,andifapproachvelocityv10weget

    sectionsAAandBBperunitmassflowofair:

  • 7/29/2019 Carburetion and Fuel Injectors

    5/22

    5

    CalculationofAirfuelRatio

    20

    22

    12

    hh

    212 2 hhv

    writecanwehenceTch

    getwegasperfectabetoassumedisairIf

    25

    212 2 TTcv p

    k

    k

    k

    k

    p

    pTTT

    p

    p

    T

    Tthen

    isentropicbetothroattoinletfromflowAssume

    1

    1

    2121

    1

    1

    2

    1

    2

    1

    CalculationofAirfuelRatio

    k

    k

    ppTTT

    1

    1

    2121 1

    212 2 TTcv p

    k

    k 1

    26

    pp

    Tcv1

    212 12

    Bythecontinuityequationwecanwritedownthetheoreticalmassflowrateofair

    222111

    .

    vAvAma

    where A1 and A2 are the crosssectional areas at the air inlet (point 1)and venturi throat (point 2).

    CalculationofAirfuelRatio

    k

    k

    pp

    pTcv

    1

    1

    212 12

    222111

    .

    vAvAma

    (velocity)

    27

    To calculate the mass flow rate of air at the throat, we have assumed theflow to be isentropic till the throat so the equation relating p and v (or) can be used.

    kk vpvp 2211 kkpp

    2

    2

    1

    1

    k

    p

    p1

    1

    212

    (specificvolume)

    CalculationofAirfuelRatio

    k

    k

    pp

    pTcv

    1

    1

    212 12

    222111

    .

    vAvAma

    1

    28

    k

    p

    p

    1

    212

    k

    k

    p

    k

    a

    p

    pTcA

    p

    pm

    1

    1

    212

    1

    1

    21

    .

    12

    CalculationofAirfuelRatio

    k

    k

    p

    k

    a

    p

    pTcA

    p

    pm

    1

    1

    212

    1

    1

    21

    .

    12

    For a perfectgas we have 1

    11

    RT

    p

    29

    k

    k

    p

    k

    ap

    pTcA

    RT

    p

    p

    pm

    1

    1

    212

    1

    1

    1

    1

    2.

    12

    rearrangingtheaboveequationwehave

    k

    k

    k

    pap

    p

    p

    pc

    TR

    pAm

    1

    1

    2

    2

    1

    2

    1

    12.

    2

    CalculationofAirfuelRatio

    k

    k

    k

    pap

    p

    p

    pc

    TR

    pAm

    1

    1

    2

    2

    1

    2

    1

    12.

    2

    Since the fluid flowing in the intake is air, we can put in theapproximate values of R = 287 J/kgK, cp = 1005 J/kgKand k = 1.4 at 300K.

    30

    1

    12

    .

    1

    2.

    1

    2

    1

    12.

    1562.0

    1562.0

    T

    pA

    p

    p

    p

    p

    T

    pAma

    71.1

    1

    2

    43.1

    1

    2

    p

    p

    p

    pwhere

  • 7/29/2019 Carburetion and Fuel Injectors

    6/22

    6

    CalculationofAirfuelRatio

    1

    12

    71.1

    1

    2

    43.1

    1

    2

    1

    12.

    1562.0

    1562.0

    T

    pA

    p

    p

    p

    p

    T

    pAma

    71.1

    1

    2

    43.1

    1

    2

    p

    p

    p

    p

    31

    Here, pressure p is in N/m2, area A is in m2,and temperature Tis in K.If we take the ambient temperature T1 = 300Kand ambient pressurep1 = 10

    5 N/m2, then2

    .

    8.901 Ama

    Above equation gives the theoretical mass flow rate of air. The actualmass flow rate, can be obtained by multiplying the equation by thecoefficient of discharge for the venturi, Cd,a.

    .

    .

    ,

    a

    aad

    m

    mC

    1

    12,

    .

    1562.0

    T

    pACm ada

    The coefficient of discharge and area are both constant for a givenenturi hus

    CalculationofAirfuelRatio

    71.1

    1

    2

    43.1

    1

    2

    p

    p

    p

    p

    32

    1

    1.

    T

    pma

    Sincewehavetodeterminetheairfuelratio,wenowcalculatethefuelflowrate.

    1

    1.

    T

    pma

    Thefuelisaliquidbeforemixingwiththeair,itcanbetakentobeincompressible.

    WecanapplyBernoullisequationbetweentheatmosphericconditionsprevailing atthetopofthefuelsurfaceinthefloatbowl

    CalculationofAirfuelRatio

    33

    whichcorrespondstopoint1andthepointwherethefuelwillflowout,attheventuri,whichcorrespondstopoint2.

    Fuel flow will take place because of the drop in pressure at point 1due to the venturi effect.

    (Constant)C gz2VP 2

    2

    22

    2

    2

    1

    21

    1

    1

    22 gz

    VP

    gz

    VP

    or

    1

    1.

    T

    pma Fuel flow will take place because of

    the drop in pressure at point 1 dueto the venturi effect.

    2

    22

    2

    21

    21

    1

    1

    22gz

    VPgz

    VP

    2

    22

    2

    2

    1

    1

    2gz

    VPP

    CalculationofAirfuelRatio

    34

    (1)

    (2)gzVPP f

    ff

    2

    2

    21

    where f is the density of the fuel in kg/m3, Vf is the velocity of the fuel

    at the exit of the fuel nozzle (fuel jet), and z is the depth of the jet exitbelow the level of fuel in the float bowl. This quantity must always be

    above zero otherwise fuel will flow out of the jet at all times. The valueof z is usually of the order of 10 mm.

    gzVpp f

    ff

    2

    2

    21

    From above equation we can obtain an expression for the fuel velocity atthe jet exit as

    gzpp

    Vf212

    CalculationofAirfuelRatio

    35

    f

    Applyingthecontinuityequationforthefuel,wecanobtainthetheoretical massflowrate,

    gzppA

    VAm

    fff

    ffff

    21

    .

    2

    where Af is the exit area of the fuel jet in m2. If Cd,f is the

    coefficient of discharge of the fuel nozzle (jet) given by

    .

    .

    ,

    f

    f

    fd

    m

    mC

    .

    21, 2 gzppACm ffffdf

    CalculationofAirfuelRatio

    36

    Since .

    .

    f

    a

    m

    m

    F

    A

    Fuel

    Air

    gzppTp

    A

    A

    C

    C

    F

    A

    ffffd

    ad

    211

    12

    ,

    ,

    21562.0

    1

    12,

    .1562.0

    TpACm ada

    71.1

    1

    2

    43.1

    1

    2

    p

    p

    p

    p

  • 7/29/2019 Carburetion and Fuel Injectors

    7/22

    7

    CalculationofAirfuelRatio

    k

    k

    k

    p

    ad

    ap

    p

    p

    pc

    TR

    pACm

    1

    1

    2

    2

    1

    2

    1

    12,.

    2 .

    21, 2 gzppACm ffffdf

    1

    11

    RT

    p

    11

    1 1

    Tp

    R

    11

    1 1

    Tp

    R

    37

    k

    k

    k

    padap

    p

    p

    pc

    R

    p

    p

    RACm

    1

    1

    2

    2

    1

    21

    1

    12,

    .

    2

    k

    k

    k

    padap

    p

    p

    pc

    R

    pACm

    1

    1

    2

    2

    1

    2112,

    .

    2

    CalculationofAirfuelRatio

    .

    21, 2 gzppACm ffffdf

    k

    k

    k

    padapp

    ppc

    RpACm

    1

    1

    2

    2

    1

    2112,

    .

    2

    k

    k

    kc12

    .

    1

    .

    c

    R

    c

    cRcc

    pp

    v

    vp

    38

    padappR

    pACm1

    2

    1

    2112, 2

    1

    1

    k

    k

    R

    c

    ck

    p

    p

    k

    k

    k

    adap

    p

    p

    p

    k

    kpACm

    1

    1

    2

    2

    1

    2112,

    .

    1

    2

    CalculationofAirfuelRatio

    .

    21, 2 gzppACm ffffdf

    k

    k

    k

    adap

    p

    p

    p

    k

    kpACm

    1

    1

    2

    2

    1

    2112,

    .

    1

    2

    39

    gzppAC

    p

    p

    p

    p

    k

    kpAC

    m

    m

    ffffd

    k

    k

    k

    ad

    f

    a

    21,

    1

    1

    2

    2

    1

    2112,

    .

    2

    1

    2

    CalculationofAirfuelRatio

    gzppAC

    p

    p

    p

    p

    k

    kpAC

    m

    m

    ffffd

    k

    k

    k

    ad

    f

    a

    21,

    1

    1

    2

    2

    1

    2112,

    .

    2

    1

    2

    40

    k

    k

    k

    ffffd

    ad

    f

    a

    p

    p

    p

    p

    k

    k

    gzpp

    p

    A

    A

    C

    C

    m

    m1

    1

    2

    2

    1

    2

    21

    12

    1

    12

    ,

    ,

    .

    1

    21 pppa Ifweput 1

    1

    21

    p

    p

    p

    pa

    and

    CalculationofAirfuelRatio

    k

    k

    k

    ffffd

    ad

    f

    a

    p

    p

    p

    p

    k

    k

    gzpp

    p

    A

    A

    C

    C

    m

    m1

    1

    2

    2

    1

    2

    21

    12

    1

    12

    ,

    ,

    .

    1

    21 pppa 1

    1

    21

    p

    p

    p

    pa

    41

    1

    2

    1

    1

    2

    2

    1

    2

    2

    1

    12

    ,

    ,

    .

    1

    1

    p

    p

    p

    p

    p

    p

    k

    k

    gzp

    p

    A

    A

    C

    C

    m

    m

    k

    k

    k

    fa

    a

    fffd

    ad

    f

    a

    CalculationofAirfuelRatio

    1

    2

    1

    1

    2

    2

    1

    2

    2

    1

    12

    ,

    ,

    .

    1

    1

    p

    p

    p

    p

    p

    p

    k

    k

    gzp

    p

    A

    A

    C

    C

    m

    m

    k

    k

    k

    fa

    a

    fffd

    ad

    f

    a

    42

    gzpp

    AA

    CFA

    fa

    a

    f

    a

    ffd

    ad

    2

    ,

    ,

    2

    1

    1

    2

    1

    1

    2

    2

    1

    2

    11

    p

    p

    p

    p

    p

    p

    k

    k

    k

    k

    k

  • 7/29/2019 Carburetion and Fuel Injectors

    8/22

    8

    if we take T1 = 300K and p1 = 105 N/m2 then

    gzppAA

    C

    C

    F

    A

    ffffd

    ad

    21

    2

    ,

    ,

    28.901

    The coefficient of discharge represents the effect of all deviations fromthe ideal onedimensional isentropic flow. It is influenced by many

    CalculationofAirfuelRatio

    43

    factors of which the most important are:

    1.Fluidmassflowrate,2.Orificelengthtodiameterratio,3.Orificeareatoapproacharearatio,4.Orificesurfacearea,5.Orificesurfaceroughness,6.Orificeinletandexitchamfers,7.Fluidspecificgravity,8.Fluidviscosity,and9.Fluidsurfacetension.

    Airfuelrationeglectingcompressibilityofair

    Ifweassumeairtobeincompressible,thenwecanapplyBernoullisequationtoairflowalso.Sinceinitialvelocityis

    assumedzero,wehave

    2221 vpp

    Thus

    44

    2aa

    Thus

    a

    ppv

    212 2

    Applyingthecontinuityequationforthefuel,wecanobtainthetheoreticalmassflowrate,

    21222.

    2 ppACAm aaa

    where A2 is the venturi in m2. If Cd,a is the coefficient of discharge of the

    venturi given by.

    45

    .,

    a

    aad

    m

    C

    then .

    212,

    .

    2 ppACm aada

    Since .

    .

    f

    a

    m

    m

    F

    A

    Fuel

    Air

    gzpp

    pp

    A

    A

    C

    C

    F

    A

    ff

    a

    ffd

    ad

    21

    212

    ,

    ,

    ppACA aad 212,

    46

    gzpp ffffd 21,

    Ifweassumez=0,then

    f

    a

    ffd

    ad

    A

    A

    C

    C

    F

    A

    2

    ,

    ,

    The equivalence ratio, (ratio between stoichiometric airfuel ratio to actual air fuel ratio)

    AA

    F

    A

    s 6.14

    112 k

    gzp

    p

    A

    A

    C

    C

    F

    A

    fa

    a

    f

    a

    ffd

    ad

    2

    ,

    ,

    Typicalvalueforagasolineengine

    47

    2

    1

    2,

    , 1

    a

    f

    a

    ff

    ad

    fds

    p

    gz

    A

    A

    C

    CF

    A

    FF

    1

    2

    1

    2

    1

    2

    11

    p

    p

    pp

    pp

    k

    k

    kk

    2

    1

    2,

    ,1

    a

    f

    a

    ff

    ad

    fds

    p

    gz

    A

    A

    C

    CF

    A

    Theeffectsofequivalenceratiovariations

    Mixturerequirementatfullload:Completeutilizationofairtoobtainmaximumpower,wideoperationofthrottle,richofstoichiometricmixtures,1.1.

    Mixturerequirementatpartloads:Partthrottle,diluteair

    48

    mixturewithexcessairorexhaustedgasrecycled(EGR)(improvesthefuelconversionefficiency).

    Theequivalentratioofthemixturedeliveredbyanelementarycarburetorisnotconstant.

  • 7/29/2019 Carburetion and Fuel Injectors

    9/22

    9

    ACA

    CalculationofAirfuelRatio

    1

    2

    1

    1

    2

    2

    1

    2

    2

    1

    12

    ,

    ,

    .

    1

    1

    p

    p

    p

    p

    p

    p

    k

    k

    gzpp

    AA

    CC

    mm

    k

    k

    k

    fa

    a

    fffd

    ad

    f

    a

    49

    gzpACF fa

    a

    f

    a

    ffd ,

    ,

    2

    1

    1

    2

    1

    1

    2

    2

    1

    2

    11

    p

    p

    p

    p

    p

    p

    k

    k

    k

    k

    k

    50

    CarburetorPerformance

    Figureshowstheperformanceofanelementarycarburetor.ThetopgraphshowsthevariationofCd,a andCd,f and withtheventuripressuredrop(typicallyvarywithpressuredrop).For pa fgz,thereisnofuelflow.Oncefuelstartstoflow,thefuelflowrateincreasesmore

    51

    rap y an ea r owra e. ecar ure or e versamixtureofincreasingequivalenceratioastheflowrateincreases.z istypicallyorderof10mm.Usuallyfuellevelinthefloatchamberisheldbelowthefueldischargenozzletopreventthefuelspillagewhentheengineisinclinedtohorizontal.

    Thedeficienciesofaelementarycarburetor

    1. Atlowloadsthemixturebecomesleaner;theenginerequiresthemixturetobeenrichedatlowloads.

    2. Atintermediateloads,themixtureequivalenceratioincreasesslightlyastheairflowincreases.Theenginerequiresanalmostconstantequivalenceratio.

    3. Astheairflowapproachesthemaximumwideopenthrottle

    52

    value,theequivalenceratioremainsessentiallyconstant.However,themixtureequivalenceratioshouldincreaseto1.1orgreatertoprovidemaximumenginepower.

    4. Theelementarycarburetorcannotcompensatefortransientphenomenaintheintakemanifold.Norcanenrichthemixtureduringenginestartingandwarmup.

    5. Theelementarycarburetorcannotadjusttochangesinambient

    airdensity(dueprimarilytochangesinaltitude).

    ModernCarburetorDesign

    Thechangesrequiredintheelementarycarburetorsothatitprovidestheequivalenceratiorequiredatvariousairflowratesareasfollows.

    1. Themainmeteringsystem mustbecompensatedtoprovideaconstantleanorstoichiometricmixtureover20to80%oftheairflowrange.

    2. Anidlesystemmustbeaddedtometerthefuelflowatidleandlightloadstoprovidearichmixture.

    3. Anenrichmentsystem mustbeprovidedsothattheenginecangetarichmixtureaswideopenthrottleconditionsisapproachedandmaximumpowercanbeobtained.

    53

    4. Anacceleratorpump mustbeprovidedsothatadditionalfuelcanbeintroducedintotheengineonlywhenthethrottleissuddenlyopened.

    5. Achoke mustbeaddedtoenrichthemixtureduringcoldstartingandwarmuptoensurethatacombustiblemixtureisprovidedtoeachcylinderatthetimeofignition.

    6. Altitudecompensation isnecessarytoadjustthefuelflowwhichmakesthemixturerichwhenairdensityislowered.

    7. Increaseinthemagnitudeofthepressuredropavailableforcontrollingthefuelflowisprovidedbyintroducingboostventuris(Venturisinseries)orMultiplebarrelcarburetors(Venturisinparallel).

    Twocommonmethodsusedtoachieveaboveare

    Boostventuris

    Doubleventurisystem,multipleventuris.

    54

    Multiplebarrelcarburetors

    Twobarrelcarburetorsusuallyconsistsoftwosinglebarrelcarburetorsmountedinparallel.

  • 7/29/2019 Carburetion and Fuel Injectors

    10/22

    10

    Fuelinjectionsystems

    Gasolinefuelinjection Injectthefuelintotheengineintakesystem

    Requiredoneinjectorpercylinder

    Therearebothmechanicalandelectronicinjectorsystems Increasedpowerandtorque,uniformfueldistribution,rapidengine

    responsetothrottleposition,precisecontrolofequivalenceratio

    Dieselfuelinjection

    55

    FuelsprayedincylindernearTDC

    Atomization,vaporization&mixingdelayignition

    Ignitionoccurswhereverconditionsright

    Combustionratecontrolledbyinjectioncharacteristics(injectionrate,sprayangle,injectionpressure,nozzlesizeandshape),chambershape,mixturemotion,&turbulence

    Glowplugmaybeusedtoaidcoldstarting

    Poweroutputcontrolledonlybyamountoffuelinjected

    MeritsofFuelInjectionintheSIEngine

    AbsenceofVenturi NoRestrictioninAirFlow/HigherVol.Eff./Torque/Power

    HotSpotsforPreheatingcoldaireliminated/Denserairenters ManifoldBranchPipesNotconcernedwithMixturePreparation

    (MPI)

    BetterAccelerationResponse(MPI)

    56

    FuelAtomizationGenerallyImproved

    UseofGreaterValveOverlap

    Use of Sensors to Monitor Operating Parameters/Gives AccurateMatching of Air/fuel Requirements: Improves Power, Reducesfuel consumption and Emissions

    PreciseinMeteringFuelinPorts

    PreciseFuelDistributionBetweenCylinders(MPI)

    LimitationsofPetrolInjection HighInitialCost/HighReplacementCost

    IncreasedCareandAttention/MoreServicingProblems

    RequiresSpecialServicingEquipmenttoDiagnoseFaultsandFailures

    SpecialKnowledgeofMechanicalandElectricalSystemsNeededtoDiagnoseandRectifyFaults

    InjectionEquipmentComplicated,DelicatetoHandleandImpossibletoServicebyRoadsideServiceUnits

    57

    ContainMoreMechanicalandElectricalComponentsWhichMayGoWrong

    IncreasedHydraulicandMechanicalNoiseDuetoPumpingandMeteringofFuel

    Very Careful Filtration Needed Due to Fine Tolerances of Metering andDischarging Components

    More Electrical/Mechanical Power Needed to Drive Fuel Pump and/orInjection Devices

    More Fuel Pumping/Injection Equipment and Pipe Plumbing Required May be Awkwardly Placed and Bulky

    GasolineFuelInjectionSystemComponents

    1. ElectricFuelPump

    2. FuelAccumulator MaintainsFuelLinePressureWhenEngineisShutOffandQuietnesstheNoiseCreatedbytheRollerCellPump

    3. FuelFilter APleatedPaperorLintoffluffTypePlusStrainer

    4. PrimaryPressureRegulator MaintainsOutputDeliveryPressuretobeAbout5Bar

    58

    5 PushUpValve PreventsControlPressureCircuitLeakage.

    ItisaNonreturnValvePlacedatOppositeEndofPressureRegulator

    6. Fuel Injection Valve Valves are Insulated in Holders to Prevent FuelVapor Bubbles Forming in the Fuel Lines Due to Engine Heat.

    ValvesOpenatabout3.3BarandSprayFuel.

    ValveOscillatesAbout1500cyclespersecondandsoHelpsinAtomization

    GasolineFuelInjection

    InSIenginestheairandfuelareusuallymixedtogetherintheintakesystempriortoentrytotheenginecylinder.

    Ratioofairtofuel 15:1

    59

    Fuelisinjectedtotroughindividualinjectorsfromalowpressurefuelsupplysystemintotheintakeport.

    IndirectInjection

    AlsoCalledManifoldInjectionorSinglePointInjection(SPI)orThrottleBodyInjection(TBI)

    InjectorUsuallyUpstreamFromThrottle(AirIntakeSide)orInSomeCasesPlacedontheOppositeSide

    PressuresareLow 2to6Bar.MaybeInjectedIrrespectiveofIntakeProcess

    60

    CostWouldbeLow

    Has Same Air and Fuel Mixing and Distribution Problems asCarburetor but Without Venturi Restriction so Gives HigherEngine Volumetric Efficiency

    Higher Injection Pressures Compared to Carburetion Speeds upAtomization of Liquid Fuel

  • 7/29/2019 Carburetion and Fuel Injectors

    11/22

    11

    SemidirectInjection AlsoCalledPortInjectionorIndirectMultipointInjection(IMPI)or

    SimplyMultipointInjection(MPI)

    InjectorsPositionedinEachInductionManifoldBranchJustinFrontofInletPort

    InjectionatLowPressure(26Bar)

    NeedNotBeSynchronizedWithEngineInductionCycle

    FuelCanBeDischargedSimultaneouslytoEachInductionPipeWhere

    61

    itisMixedandStoredUntilIVO

    NeedNotBeTimed RequiresLowDischargePressures InjectorsNotExposedtoCombustionProductssoComplexityReduced LessCost

    No Fuel Distribution Difficulties Since Each Injector Discharges DirectlyInto Its Own Port and Mixture Moves a Short Distance Before EnteringCylinder

    Induction Manifold Deals Mainly With Only Inducted Air So BranchPipes Can Be Enlarged and Extended to Maximize Ram Effect

    DirectCylinderInjection AlsoCalledDirectMultipointInjection(DMPI)orGasolineDirect

    Injection(GDI)

    InjectionMaybeDuringIntakeorCompressionProcess

    IncreasedTurbulenceRequired ToCompensateForShorterPermittedTimeFor

    Injection/Atomization/MixingInjectionPressureMustBeHigher

    MoreValveOverlapPossibleSoFreshAirCanBeUtilizedFor

    62

    InjectorNozzleMustBeDesignedForHigherPressureandTemperatureSoMustBeMoreRobustandWillBeCostlierThanOtherTypes

    PositionandDirectionofInjectionAreImportant NoOnePositionWillBeIdealForAllOperatingConditions

    AirandFuelMixingIsMoreThoroughinLargeCylindersThanInSmallCylindersBecauseDropletSizeistheSame

    CondensationandWallWettinginIntakeManifoldEliminatedButCondensationOnPistonCrownandCylinderWalls

    GasolineFuelInjectionInjectortypes

    Mechanicalinjectionusinganinjectionpumpdrivenbytheengine.

    Mechanical,driveless,continuousin ection.

    63

    Electronicallycontrolleddrivelessinjection.

    FuelInjection (electronic,multiport)

    Monitored EngineOperating Conditions:

    Manifold PressureEngine Speed

    Air TemperatureCoolant Temperature

    Acceleration

    COMPUTERTRIGGER

    64

    50 psi typical

    INJECTOR DRIVE UNIT

    Pressure Regulator Fuel Filter

    FuelPump

    FUEL TANK

    Injectors

    ELECTRONICFUELINJECTION

    Strictemissionstandardsrequireprecisefueldelivery

    Computersusedtocalculatefuelneeds

    EFIveryprecise,reliable&costeffective

    EFIprovidecorrectA/Fratioforallloads,speeds,&temp

    65

    ranges

    TheFuelInjector

    Electromechanicaldevice

    Enginerpmdetermineswheninjectoropens

    Howlongitstaysopendeterminedby:

    Enginetemp

    66

    Throttlepos.

    O2sensorvoltage

  • 7/29/2019 Carburetion and Fuel Injectors

    12/22

    12

    ThrottleBodyInjection(TBI)

    Firstinjectionunitused

    HousingsimilartoCarb

    One or two

    67

    injector

    Oneortwooftheseunitsmountedtointakemanifold

    FIG 6-40 CLASS

    LOWPRESSUREFUELINJECTOR

    1316psioperatingpressure

    68

    a sty epintle

    Easilyreplaceable

    MultiPortFuelInjection

    Oneinjectorpercylinder

    Mountsinintakemanifold,spraysdirectlyatintakevalve

    69

    individually (SFI)

    RamTuningfordenseraircharge

    LowerA/Ftemps

    Leanermixtureduringwarmup

    FuelPressureRegulator

    Locatedatendoffuelrail

    Maintainsconstantpressureatinjectors

    Internalchambercontainsadiaphragm Pressurizedfuelononeside

    Manifoldvacuum&springtensiononother

    70

    Manifoldvacuumpullsupondiaphragm,meteringfuelthatisreturnedtotank

    Excessfuelpressurecanovercomespringtension,allowingfueltoreturntotank

    Increasesinmanifoldpressurecausesspringtensiontopushdiaphragmdown,blocking

    returnline,increasingpressureinrail.

    FuelPressureRegulator

    71

    Vacuum hoseconnection Fuel rail

    FuelPressureRegulator

    72

    Fuelreturn

  • 7/29/2019 Carburetion and Fuel Injectors

    13/22

    13

    Dieselengine(CI)

    Theliquidfueljetatomizesintodropsandentrainsair;evaporatesfuelvapormixeswithairairtemperatureandpressureareabovethefuelsignitionpoint.Afterashortdelayautoignitionstarts.

    73

    Dieselfuelinjectionsystemconsistsof

    1. Injectionpump

    2. Deliverypipes

    3. Fuelinjectornozzles

    74

    THEDIESELFUELSYSTEM

    75

    InjectionPumpusuallymechanical drive

    Beltsandrollersnotgood,usegearsandchains

    Notespilllinefrominjector,pump,separator

    FuelInjectionSystems

    76

    GeneralCharacteristics

    Pumprunsatenginespeed

    ControlsQuantityANDtimingofinjection

    Maxfuellimitedbysmokelimit

    Howdoestimingvarywithload?

    IgnitiondelayisSHORTER(higherdensity)BUT:

    Althoughignitiondelayisshorted,stillneedmoreadvancetoensureallfuelisburntduringstroke

    77

    Timingvarieswithloadandspeed

    Timingaccurateto1o crankangle

    Atmaxloadfuelvarianceamongcylindersshouldbelessthan3%otherwisepowerlimitedbysmokyexhaustofrichestcyl.

    Apumpaintsosimple!

    78

  • 7/29/2019 Carburetion and Fuel Injectors

    14/22

    14

    Layoutofconventionalfuelsystem

    79

    InLinePumps(mostcommon)asetofcamdrivenplungers(oneforeachcylinder)

    Drivenfromcrankspeed

    Multilobecam Thisexampleusesrack,notlever

    Rackrotatesplungerassy andcontrolsflow

    80

    drivenbyrotatingweightsactingagainstaspring(likemechanicaladvanceondistributor)

    Fueltrappedintheplungerisforcedthroughacheckvalveintotheinjectionline.Theinjectionnozzlehasoneormoreholesthroughwhichthefuelissprayedtocylinder.

    PlungerDesign TraditionalInjectionPump

    81

    Plungerforcesfuelthroughfitting

    RotatingLevercontrolshowmuchspills back levercontrolsfuelflow(nothrottle)

    Allrunbycamdrivenbycrank

    Plungers

    Operation:

    Plungermovesupandblocksinlet

    Fuelisallowedtoescapethroughspillport(noticehelical

    82

    Reminderoffuelforcedoutoutletport

    Strokeisconstantbydeliveryvariedbyrotation

    RotaryPump

    83

    Muchlesscomplicatedbutlowerpressures

    Fewmovingparts

    Fedbytransferpump

    Meteringthroughgovernormechanism rotorslides

    Pressurizationviaslidingpistons

    TypicalRotaryPump

    84

  • 7/29/2019 Carburetion and Fuel Injectors

    15/22

    15

    FuelInjectors

    Nozzletypedictatesperformance

    SingleHole

    GoodforID

    1mmhardtoclog

    Multihole

    Bettermisting

    Easyclogassize >0.1mm

    85

    Clogscausedbydecompofleakedfuel

    Differentialpressurescauseopening

    Noteneedledesign pressureOPENSnozzle

    Differentialpressures

    f(needlediametervs.seatdiameter)

    Springclosing

    Hardertoopenthantokeepopen

    Smallerseatcontactareaandstrongspringenhancesealing,eliminatedribble

    Dribbleleadstoemissionsanddeposits

    Timing sets

    86

    Gear sets

    Cam and crank rotate in opposite directions Noisy if not free of burrs Helical and spur cut gears

    Timing sets

    87

    Timing chains Single and double roller Tensioners

    PintleNozzle

    Excellentdisbursement,providesconicalspraypattern

    LooksSimilartothatusedinCISsystems

    OpensUPWARD

    88

    xce en c ogres s ance

    MoreInjectorConsiderations Auxholetobleedexcessfuelandpreventdeposits

    4VHeads:Upside

    Vf Up

    Central injector position

    Downside

    Less swirl

    More nozzle holes for ood disbursion/combustion, as

    89

    small as 0.1 mm Nozzlescooledbyfuel

    Coolingimportanttomaintaintolerancesandsealing

    SprayPatternCritical!AspectRatioof28

    LargerAspectRatio morepenetration

    LargerAspectratio Smallercone

    Atomizationupw velocity,butrestrictspenetrationaswell

    PilotInjection

    SmallAmountoffuelearlytoinitiateflamefront

    Allowsforlargeadvance

    Eliminatesknockandcorrespondingproblemsassociatedwithhighpeakpressuresandwaveimpingement

    2SpringSpecialinjectorneededfor2modeoperation

    90

  • 7/29/2019 Carburetion and Fuel Injectors

    16/22

    16

    ElectronicUnitInjection

    ElectronicUnitInjection

    SolenoidControlled

    Sofastpilotinjectioncanbeused

    Expensivetoproduce

    Widelyusedinheavytruck

    91

    whereemissionsandeconomyarecritical

    ControlledjustlikeSIEFI

    VariationisHEUI

    MovingComponents

    Valves

    Intake:opentoadmitairtocylinder(withfuelinOttocycle)

    Exhaust:opentoallowgasestoberejected

    Camshaft&Cams

    92

    Usedtotimetheadditionofintakeandexhaustvalves

    Operatesvalvesviapushrods&rockerarms

    Valve trains

    93

    OHV (overhead valve)Pushrod configurationMany reciprocating partsHigher valve spring pressure required

    Compact engine size compared to OHC

    Valve trains

    94

    OHC (overhead cam)Fewer reciprocating partsReduced valve spring pressure required

    Higher RPM capabilityCylinder head assemblies are taller

    Valve trains

    95

    Cam-in-head

    No pushrodsUse rocker arms

    ValveLocations

    96

  • 7/29/2019 Carburetion and Fuel Injectors

    17/22

    17

    Combustion process: stratified chargeCombustion process: stratified charge

    97

    jet guided wall guided inlet air guided

    ChargeStratification

    98

    CombustionChamberDesigns

    99

    CombustionChamberDesign

    100

    CombustionChamberDesign

    101

    CombustionChamberDesign

    102

  • 7/29/2019 Carburetion and Fuel Injectors

    18/22

    18

    CombustionChamberDesign

    103

    CombustionChamberDesign

    104

    CombustionChamberDesign

    105

    CLASSIFICATIONOFINTERNALCOMBUSTIONENGINES

    Cooling

    1. DirectAircooling

    106

    .

    3. LowHeatRejection(Semiadiabatic)engine.

    Cooling system operation

    Engine heat is transfered . . . through walls of the combustion chambers through the walls of cylinders

    Coolant flows . . .

    107

    o upper ra aor ose through radiator to water pump through engine water jackets through thermostat back to radiator

    Cooling system operation

    Fans increase air flow through radiator Hydraulic fan clutches Hydraulic fans consume 6 to 8 HP Electric fans

    108

    Coolant (ethylene glycol) 50/50 mixture increases boiling point to 227F pressurizing system to 15 PSI increases to 265F

    Coolant (propylene glycol) Less protection at the same temperatures Less toxic

  • 7/29/2019 Carburetion and Fuel Injectors

    19/22

    19

    CIvs.SIEngines

    SIenginesdrawfuelandairintothecylinder. Fuelmustbeinjectedintothecylinderatthedesiredtimeof

    combustioninCIengines. AirintakeisthrottledtotheSIengine nothrottlinginCIengines.

    CompressionratiosmustbehighenoughtocauseautoignitioninCIengines(CI:12to24),compressedtopressureabout4Mpa

    109

    an empera urea ou . UppercompressionratioinSIenginesislimitedbytheauto

    ignitiontemperature(SI:8to12). FlamefrontinSIenginessmoothandcontrolled. CIcombustionisrapidanduncontrolledatthebeginning. ThevalvetiminginbothCIandSIaresimilar.

    Diesel: GasolinesDirtyCousin?

    110

    HowisDieselDifferentfromGasoline?

    Dieselisapetroleumbasedfuelwithahigherenergycontentthangasoline.

    containsabout30%moreenergypergallonascomparedtogasoline.

    Dieselisasaferfuelthangasolineorotheralternatives.

    lessflammableandex losivethan asolineduetolower

    111

    combustibility.

    DieselisCheaperthanGasoline

    CurrentCostofaGallonofGasolineandDiesel

    Gasoline = $1.78

    Diesel = $1.65

    MisconceptionsAboutDiesel

    ItsDirty

    ItCausesalotofPollution

    112

    IthasLimitedUses

    BenefitsofDiesel

    Awellmaintaineddieselengineusuallyemitslowerlevelsofcarbonmonoxide,hydrocarbonsandcarbondioxidethangasolineengines.

    Betterfueleconomy,

    113

    ncrease ura y or ongereng ne e.

    ProblemswithOldDieselTechnologies

    HighSulfurContentofFuel

    HighNOx Emissions

    HighParticulateMatterEmissions

    TheBlackSmokeeveryonesees

    114

    NoisyEngines

  • 7/29/2019 Carburetion and Fuel Injectors

    20/22

    20

    SulfurContent

    DieselfuelavailableintheU.S.currentlycontainsfrom340ppmofsulfurto140ppminCalifornia.

    EuropeanStandardsaremuchlower

    Aslowas10ppminGermanyandSweden

    115

    NOx Emissions

    HighcylinderpressureandtemperaturewithexcessiveairistherecipeformakingNOx Becauseofexcessairindieselengines,currentcatalyticcant

    scruboutNOx

    116

    ParticulateMatter

    Unburnedfuelinthecompressionignitionprocessbecomessoot,apervasiveformofparticulatematter.

    117

    CleanDiesel

    Cleandieselisanevolutionarysystemsbasedprocessthatcombinesadvancementsindieselengines,cleanerburningfuelsandemissionscontrolsystem,allworkingandoptimizedtogether.

    118

    WhatMakesDieselClean?

    TheThreePillarsofCleanDieselTechnology:

    cleanerburningfuels

    stateoftheartengines

    effectiveemissionscontrolsystems

    119

    CleanerBurningFuels

    ThenewestindieselfuelsiscalledUltralowSulfurDiesel(ULSD)

    Ultralowsulfurdieselfuelisaspeciallyrefineddieselfuelthathasdramaticall lowersulfurcontentthan

    120

    regulardieselandcanbeusedinanydieselenginejustlikeregulardieselfuel.

    Today,thesulfurcontentofULSDrangesfrom15to30partspermillion.Regulardieselhasamaximumof500partspermillionofsulfur.

  • 7/29/2019 Carburetion and Fuel Injectors

    21/22

    21

    HowDoesULSDHelp?

    Reducessulfateemissions Allowstheuseofparticulatetrapsandcatalyticconverters

    Lowersenginemaintenancecosts

    Easytoconvertto

    121

    Noretrofittingrequired

    Onlycostsafewcentsmore

    StateoftheArtEngines

    NewEngineTechnologies ElectronicControls

    CommonrailFuelInjection

    VariableInjectionTiming

    122

    ImprovedCombustionChamberConfiguration

    Turbocharging

    ComparisonofSIandCIEngines

    123

    TypicalBrakeThermalEfficienciesofCIandSIEngines

    124

    125 126

  • 7/29/2019 Carburetion and Fuel Injectors

    22/22

    127

    (portfuelinjection)

    128

    Roger Krieger, GM R&D Center

    129

    Roger Krieger, GM R&D Center

    SummaryDieselEngines

    Advantages:

    Efficiency(mostefficientprimemover) Emissions(lowCO,CO2,gooddurability) Veryhightorqueandperformance

    130

    Roger Krieger, GM R&D Center

    sa van ages:

    Emissions(morechallengingtocontrolNOx,particulates)

    Highercost Heavier Noise(morechallengingtomakequiet)