50
Cancer pathogenesis 1.Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4.Epithelial-mesenchymal transition (EMT) 5.Cancer stem cells Jimin Shao [email protected]

Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Embed Size (px)

DESCRIPTION

Proto-oncogenes at all levels of the various signal transduction cascades that control cell growth, proliferation, and differentiation: extracellular proteins: growth factors, membrane proteins: cell surface receptors, cellular proteins: relay signals proteins in nucleus: Transcription Factors, promoters of cell cyclenucleus Fuctions of proto-oncogenes

Citation preview

Page 1: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Cancer pathogenesis

1. Oncogenes 2. Tumor suppressor genes3. Invasion and metastasis4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells

Jimin [email protected]

Page 2: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

1. Oncogene Oncogene: a gene that when mutated or expressed at abnormally-

high levels contributes to converting a normal cell into a cancer cell.

The identification of oncogene abnormalities has provided tools for the molecular diagnosis and monitoring of cancer.

Oncogenes represent potential targets for new types of cancer therapies.

Cellular oncogene (c-onc) :-- proto-oncogene : in normal physiologic version

-- oncogene : altered in cancer

Viral oncogene ( v-onc )

Page 3: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Proto-oncogenes at all levels of the various signal transduction cascades that control cell growth, proliferation, and differentiation: extracellular proteins: growth factors, membrane proteins: cell surface receptors, cellular proteins: relay signals proteins in nucleus: Transcription Factors, promoters of cell cycle

Fuctions of proto-oncogenes

Page 4: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Mechanisms of Oncogene Activation

1. Gene amplification, e.g. myc, CCND12. Point mutation, e.g. ras,3. Chromosomal rearrangement or

translocation -- transactivation of proto-onc -- fusion genes, e.g. abl-bcr4. Viral insertion activation, e.g. c-Myc

Page 5: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Translocation

Page 6: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 7: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Ras

Locates on chromosome 11, codes for a protein with GTPase activity relays signals by acting as a switch: When receptors on the cell surface

are stimulated, Ras is switched on and transduces signals that tell the cell to grow. If the cell-surface receptor is not stimulated, Ras is not activated and so the pathway that results in cell growth is not initiated.mutated in about 30% of cancers so that it is permanently switched on, telling the cell to grow regardless of whether receptors on the cell surface are activated or not.

Page 8: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Ras relays signals from the cell surface receptors to the nucleus

Ras relays signals by acting as a switch

Page 9: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

2. Tumor suppressor genes

TSGs: genes that sustain loss-of function mutations in the development of cancer

Page 10: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

TSGs: functions and tumor associations

The biology of cancer (2nd edition), RA Weinberg, 2013

Page 11: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 12: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 13: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 14: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Mechanism for the inactivation of TSGs

1. Mutation: point mutation or frameshift mutation, p532. Deletion: LOH or homozygous deletion, Rb3. Viral oncoprotein inactivation: p53, Rb4. Promoter hypermethylation, histone modification changes: p16

Page 15: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

RB:

Cell Cycle Controller

Rb regulates G1/S transition

Page 16: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Rb inactivation by viral oncoprotein

Page 17: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

P53: Function as gatekeeper

Inactivation of p53 in cancer •LOH on 17p13 in a number of tumors•Point mutation on exon 5-8 “hot-spot” (Dominant negative mutation)•MDM2 negative regulation• viral-oncogene products inactivation

Page 18: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 19: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

3. Invasion and Metastasis

Page 20: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

(1) Introduction Invasion and Metastasis: a hallmark of malignancy, occurs in four steps: Growth at primary site and angiogenesis Tumor cell invasion Lymphatic and hematogenous metastasis Growth at secondary site and angiogenesis

Page 21: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Up to 70% of patients with invasive cancer have overt or occult metastases at diagnosis.

Acquisition of the invasive and metastatic phenotype is an early event in cancer progression.

Millions of tumor cells are shed daily into the circulation. Less than 0.01% of circulating tumor cells successfully initiate a

metastatic focus. Circulating tumor cells can be detected in patients who do not

develop overt metastatic disease. Angiogenesis is a ubiquitous and early event that is necessary for

and promotes metastatic dissemination.

Page 22: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

(2) Mechanisms involved in cancer cell invasion

1) Loss of cell-to cell cohesive forces: Decreased cellular adhesion 2) Secretion of ECM-degrading enzymes: Degradation of ECM3) Active Locomotion: Abnormal or increased cellular motility 4) Protein kinases5) Tumor angiogenesis6) Metastasis-related genes

Page 23: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

1) Loss of cell-to cell cohesive forces: Cell adhesion molecules (CAMs ) : the membrane proteins that mediate selective adhesion between cells, and between cells and extracellular matrix (ECM).

•E-cadherin: Expression↓ Loss of cell-cell adhesion , Increased cell motility•Integrins : Expression↓→↑ heterodimer (alfa-beta subunits) the ligands: ECM components, collagens (I,IV), laminin (LN), fibronectin (FN), etc. •Immunoglobin superfamily : VCAM-1, ICAM-1, CEA, DCC, etc• Selectins • CD44 variants

Page 24: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 25: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

2) Secretion of ECM-degrading enzymes• Matrix Metalloproteinases (MMPs) :~ 20• Tissue inhibitors of metalloproteinases (TIMPs) : ~ 4

• Plasminogen Activators (PAs) : urokinase-type (uPA), tissue-type PA (tPA)• PA inhibitors (PAIs): ~ 3

Metastasis-associated proteinases

Cell invasion of the ECM

Page 26: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

uPA¯uPAR-initiated signal transduction and consequences

Plasminogen/Plasmin System

Page 27: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

3) Active Locomotion•Autocrine motility factor (AMF), Autotaxin (ATX), •Cytoskeletal proteins•E- cadherin •Growth factors and receptors,•ECM components (laminin, LN, etc ) 4) Protein Kinases• GPCR/RTK/CK-R/CAM-R---Rho GTPases ---signalling---cell mobility

• Integrins---FAK (focal adhesion kinase) ---signalling---cell mobility

Page 28: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 29: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

5) Tumor angiogenesis factors (TAFs)

Models of Tumour Angiogenesis

Page 30: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 31: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 32: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Blocking Blood Supply to Tumors Many solid tumors are dependent on the growth of new blood and lymphatic vessels to grow and survive. In the past 10 years, the FDA has approved 10 antiangiogenic agents.

The newest member of this growing class of therapeutics is ramucirumab (Cyramza). It was approved by the FDA for the treatment of metastatic gastric cancer and gastroesophageal junction adenocarcinoma in April 2014.Ramucirumab is also being tested in numerous clinical trials as a potential treatment for other types of cancer, such as NSCLC.

Page 33: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 34: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 35: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Metastasis-suppressor genes:

6) Metastasis-enhancing genes: Oncogenes,CD44, Integrinβ1, CEA, MMP2, u-PA, etc

Page 36: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

(3) Metastasis Therapeutic Targets and Agents

A. Targeted Therapeutics

Target Example Agents Effects Growth factors C225 (anti-EGFR) Block growth factor signaling Tyrphostins (anti-RTK)Cell adhesion Anti-v3 (Vitaxin) Blocks endothelial cell v3 peptidomimetics interaction with matrix may

regulate MP activationProteolysis MMPIs uPAR-I Blocks degradation of matrix, blocks activation of proteases, growth factorsMotility Taxanes Blockade of microtubule cycling

Page 37: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

B. Signal Inhibitors: Blockade of signals necessary for angiogenesis , invasion, and metastasis

Agent Target ActivityCAI Calcium influx Inhibits adhesion, motility, angiogenesisSqualamine Inhibits NHE-3 Anti-angiogenicPI3K inhibitors Inhibit motility, proliferation, promote

MAPK inhibitors Inhibit invasion, proliferation

Page 38: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

[J Clin Invest. 2009;119(6):1420-8. doi: 10.1172/JCI39104]

4. Epithelial-mesenchymal transition (EMT)(1) EMT有三种形式: I 型 EMT(上皮细胞 - 间质细胞转换) : 胚胎发育 ; 发育异常,畸形(先天性瓣膜性心脏病) II型 EMT(上皮细胞 - 成纤维细胞转换) : 创伤修复,瘢痕形成 ; 不愈合,过度愈合(纤维化性疾病) III型 EMT (肿瘤上皮 - 间质细胞转换) 肿瘤侵袭转移 ; 耐药,酸中毒抵抗,凋亡抵抗 ; 干细胞样特征

Page 39: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Epithelial-mesenchymal plasticity allows cancer cells to undergo functional adaptations during the invasion-metastasis cascade

W. L. Tam, R. A. Weinberg, Nat Med 19, 1438 (Nov, 2013)

Page 40: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

(2) EMT biomarkers

Page 41: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

(3) EMT Signaling Pathways

J. P. Thiery, H. Acloque, R. Y. Huang, M. A. Nieto, Cell 139, 871 (2009)

Page 42: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 43: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 44: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Z. Yu, Y. Li, H. Fan, Z. Liu, R. G. Pestell, Front Genet 3, 191 (2012)

5. Cancer stem cells

•tumorigenesis •metastasis•drug resistance• relapse

Page 45: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

The hypothesis of miPS differentiation when exposed to normal or malignant niche. miPS cells should be induced to some kinds of progenitor cells, such as hematopoietic cells and neural stem cells, differentiating into various phenotypes, such as macrophage, monocytes, neural cells, cardiac cells and pancreatic b- cells, when exposed to the normal niche. We hypothesized that CSCs may also be derived from miPS cells only when exposure to a malignant niche. [Chen L, Kasai T, Li Y, et al. A model of cancer stem cells derived from mouse induced pluripotent stem cells. PLoS One. 2012;7(4):e33544. doi:10.1371/journal.pone.0033544.g001]

Page 46: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

Cancer Cell Metastasis Cascade

Chaffer CL, Weinberg RA. A Perspective on Cancer Cell Metastasis. Science 331, 1559 (2011)

Page 47: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 48: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 49: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin
Page 50: Cancer pathogenesis 1. Oncogenes 2. Tumor suppressor genes 3. Invasion and metastasis 4. Epithelial-mesenchymal transition (EMT) 5. Cancer stem cells Jimin

•思考题:1. 简述原癌基因和抑癌基因概念,以及原癌基因激活、抑癌基因失活的机制。2. 简述肿瘤转移的基本过程和机制。3. 简述肿瘤干细胞、肿瘤微环境、 EMT概念,