57
Callan-Symanzik equations for infrared QCD Axel Weber Instituto de F´ ısica y Matem ´ aticas (IFM) Universidad Michoacana de San Nicol ´ as de Hidalgo (UMSNH) Seminar Theoretical Hadron Physics Institut f ¨ ur Theoretische Physik Justus-Liebig-Universit ¨ at Giessen July 4, 2018 Collaborators: Pietro Dall’Olio, Francisco Astorga, Juan Pablo Guti´ errez 1 / 57

Callan-Symanzik equations for infrared QCD · Callan-Symanzik equations for infrared QCD Axel Weber Instituto de F´ısica y Matem aticas (IFM)´ Universidad Michoacana de San Nicolas

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Callan-Symanzik equations for infrared QCD

    Axel Weber

    Instituto de Fı́sica y Matemáticas (IFM)Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)

    Seminar Theoretical Hadron PhysicsInstitut für Theoretische Physik

    Justus-Liebig-Universität GiessenJuly 4, 2018

    Collaborators: Pietro Dall’Olio, Francisco Astorga, Juan Pablo Gutiérrez

    1 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    2 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    3 / 57

  • Quantization of continuum Yang-Mills theory

    ◮ SU(N) Yang-Mills theory in the continuum, Landau gauge

    ◮ Faddeev-Popov determinant ⇒ ghosts (and BRST symmetry)

    ◮ Faddeev-Popov action in D-dimensional Euclidean space-time

    S =

    dDx

    (

    1

    4F aµνF

    aµν + ∂µc̄

    a(Dµc)a + iBa∂µA

    )

    ◮ gauge copies ⇒ restriction of the gauge field configurations to the (first) Gribov regionΩ (properly to the fundamental modular region) [Gribov 1978]

    ◮ Zwanziger’s horizon function, breaks the BRST symmetry; local formulation ⇒additional auxiliary fields [Zwanziger 1989]

    ◮ condensates of the additional auxiliary fields: “refined Gribov-Zwanziger scenario” ⇒effective mass term for the gluons [Dudal et al. 2008]

    4 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    5 / 57

  • ◮ Dyson-Schwinger equations are not affected by the restriction of the A-integral to Ω(without introducing the horizon function): the contributions from the boundary of Ωvanish because det(−∂µDabµ ) = 0 at the boundary [Zwanziger 2002]

    ◮ the perturbative expansion of the correlation functions, obtained from the iterativesolution of the Dyson-Schwinger equations, is also unchanged

    ◮ what can change are the (re)normalization conditions; and the BRST symmetry isbroken

    6 / 57

  • How nonperturbative is IR Yang-Mills theory?

    ◮ effective description by a local renormalizable quantum field theory: include a gluonicmass term in the Faddeev-Popov action (in 4-dimensional Euclidean space-time)

    S =

    d4x

    (

    1

    4F aµνF

    aµν +

    1

    2Aaµm

    2Aaµ + ∂µc̄aDabµ c

    b + iBa∂µAaµ

    )

    (Curci-Ferrari model, perturbatively renormalizable)

    ◮ apply straightforward one-loop perturbation theory to this action;adjust two constants, g,m2, at some renormalization scale(in principle, m2 is nonperturbatively fixed in terms of ΛQCD , or g)

    ◮ result: excellent fit to the lattice data for the propagators in the IR [Tissier, Wschebor2010]

    7 / 57

  • ◮ notations: propagators

    〈Aaµ(p)Abν(−q)〉 = GA(p

    2)

    (

    δµν −pµpν

    p2

    )

    δab(2π)4δ(p − q)

    〈ca(p)c̄b(−q)〉 = Gc(p2) δab(2π)4δ(p − q)

    and dressing functions

    GA(p2) =

    FA(p2)

    p2, Gc(p

    2) =Fc(p2)

    p2

    ◮ one-loop contributions to the gluon self energy

    and the ghost self energy

    calculated with a massive gluon propagator

    GA(p2) =

    1

    m2 + p2

    8 / 57

  • gluon propagator GA(p2) in 4 dimensions

    Tissier, Wschebor 2010

    SU(2) lattice data: Cucchieri, Mendes 2008a

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    G(p

    )

    p (GeV)

    at tree level, GA(p2) ∝

    1

    m2 + p2

    9 / 57

  • ghost dressing function Fc(p2) = p2Gc(p2) in 4 dimensionsTissier, Wschebor 2010

    SU(2) lattice data: Cucchieri, Mendes 2008b

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    F(p)

    p (GeV)

    at tree level, Fc(p2) = 1

    10 / 57

  • gluon dressing function FA(p2) = p2GA(p

    2) in 4 dimensionsTissier, Wschebor 2010

    SU(3) lattice data: Bogolubsky et al. 2009

    and Dudal, Oliveira, Vandersickel 2010

    2 p G

    (p)

    p(GeV)

    0

    0.5

    1

    1.5

    2

    2.5

    0 1 2 3 4 5 6 7 8

    at tree level, FA(p2) ∝

    p2

    m2 + p2

    renormalization group improvement necessary for the UV

    11 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    12 / 57

  • Extreme IR regime

    ◮ successful description of the IR fixed point for all dimensions (D ≥ 2) withCallan-Symanzik equations in an epsilon expansion[Weber 2012 and Weber, Dall’Olio, Astorga 2016]

    ◮ normalization condition for the gluon propagator

    GA(p2 = µ2) =

    1

    m2

    corresponding to a “high-temperature” fixed point

    ◮ for D > 2 dimensions (“decoupling solutions”), use an epsilon expansion in D = 2 + ǫdimensions with the normalization condition for the ghost propagator

    Gc(p2 = µ2) =

    1

    p2

    ◮ for D = 2 dimensions (“scaling solution”), use an epsilon expansion in D = 6 − ǫdimensions with the normalization condition for the ghost propagator

    Gc(p2 = µ2) =

    b2

    p4

    corresponding to a “Lifshitz point” and Zwanziger’s original horizon condition

    ◮ in the following, describe the crossover from the UV to the IR fixed point, and hence thecomplete momentum dependence of the propagators, in dimension D = 4

    13 / 57

  • ◮ “IR safe” renormalization scheme proposed by Tissier and Wschebor [Tissier,Wschebor 2011]: normalization conditions for the proper two-point functions

    Γ⊥A (p2)∣

    p2=µ2= m2 + p2

    Γ‖A(p2)

    p2=µ2= m2

    Γc(p2)∣

    p2=µ2= p2

    ◮ Γ⊥A

    and Γ‖A

    are the transverse and longitudinal parts of the proper gluonic 2-pointfunction

    Γ(2)A,µν

    (p) = Γ⊥A (p2)

    (

    δµν −pµpν

    p2

    )

    + Γ‖A(p2)

    pµpν

    p2

    ◮ the first two normalization conditions can be rewritten as

    Γ⊥A (p2)− Γ

    ‖A(p2)

    p2=µ2= p2

    Γ‖A(p2)

    p2=µ2= m2

    ◮ these combinations correspond to the decomposition of the 2-point function

    Γ(2)A,µν

    (p) =(

    Γ⊥A (p2)− Γ

    ‖A(p2)

    )

    (

    δµν −pµpν

    p2

    )

    + Γ‖A(p2)δµν

    which is analogous to the grouping of terms in the classical action

    p2(

    δµν −pµpν

    p2

    )

    + m2δµν

    14 / 57

  • ◮ renormalized coupling constant defined from the renormalized proper ghost-gluonvertex in the Taylor limit (ghost momentum p → 0) where there are no loop corrections

    to the vertex ⇒ g(µ2) = Z1/2A

    (µ2)Zc(µ2)gB(alternatively, use the symmetry point p2 = q2 = k2 = µ2)

    ◮ calculate the flow functions at one-loop order; then, solve the Callan-Symanzikrenormalization group equations for the propagators

    ◮ example: the µ2-independence of the bare longitudinal proper gluonic 2-point functionimplies

    µ2d

    dµ2Γ‖A(p2, µ2) = µ2

    d

    dµ2

    (

    ZA(µ2) Γ

    ‖ BA

    (p2, µ2))

    =

    (

    µ2d

    dµ2ZA(µ

    2)

    )

    Γ‖ BA

    (p2, µ2)

    = γA(µ2) Γ

    ‖A(p2, µ2)

    ◮ integrating between two renormalization scales µ̄2 and µ2,

    Γ‖A(p2, µ2) = Γ

    ‖A(p2, µ̄2) exp

    (

    ∫ µ2

    µ̄2

    dµ′ 2

    µ′ 2γA(µ

    ′ 2)

    )

    ◮ setting µ̄2 = p2 and using the normalization condition,

    Γ‖A(p2, µ2) = m2(p2) exp

    (

    ∫ p2

    µ2

    dµ′ 2

    µ′ 2γA(µ

    ′ 2)

    )

    15 / 57

  • ◮ γA(µ2) and γc(µ2) depend on g(µ2) and m2(µ2) which are obtained from the

    integration of the system of differential equations

    µ2d

    dµ2m2(µ2) = µ2

    d

    dµ2Γ‖A(µ2, µ2)

    gB ,m2B

    = βm2(

    g(µ2),m2(µ2), µ2)

    µ2d

    dµ2g(µ2) = µ2

    d

    dµ2g(µ2)

    gB ,m2B

    = βg(

    g(µ2),m2(µ2), µ2)

    ◮ all these equations are exact if the flow functions are exact; here, calculate the flowfunctions to one-loop order and integrate the Callan-Symanzik equations with theseapproximate flow functions: “renormalization group improvement” of perturbation theory

    ◮ adjust g(µ0),m2(µ0) at some renormalization scale to fit the lattice data;

    note that the lattice propagators are not normalized and thus can be arbitrarily rescaled(field rescalings)

    ◮ fitting strategy: fix g(µ0),m2(µ0) by adjusting to the data for the ghost propagator and

    the ghost dressing function;comparison to the data for the gluon propagator and the gluon dressing function thenshows how successful the renormalization scheme is in reproducing the lattice data

    ◮ in all of the following, the SU(2) lattice data are from Cucchieri and Mendes [Cucchieri,Mendes 2008a, 2008b]

    16 / 57

  • running coupling constant g(µ) in D = 4 dimensions

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    p [GeV]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12g(

    p)

    17 / 57

  • running mass parameter m2(µ) in D = 4 dimensions

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    p [GeV]

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    m2

    [GeV

    2 ]

    18 / 57

  • ghost dressing function Fc(p2) = p2Gc(p2), Taylor scheme

    0 1 2 3 4 5p [GeV]

    1

    2

    3

    4

    p2 G

    c(p)

    19 / 57

  • gluon propagator function GA(p2), Taylor scheme

    0 1 2 3 4 5p [GeV]

    0

    1

    2

    3

    4

    GA

    (p)

    20 / 57

  • gluon dressing function FA(p2) = p2GA(p

    2), Taylor scheme

    0 1 2 3 4 5p [GeV]

    0

    0.5

    1

    1.5p2

    GA

    (p)

    21 / 57

  • Derivative schemes◮ in the decomposition of the gluonic 2-point function

    Γ(2)A,µν

    (p) =(

    Γ⊥A (p2)− Γ

    ‖A(p2)

    )

    (

    δµν −pµpν

    p2

    )

    + Γ‖A(p2)δµν

    replace the normalization condition

    Γ⊥A (p2)− Γ

    ‖A(p2)

    p2=µ2= p2

    withd

    dp2

    (

    Γ⊥A (p2)− Γ

    ‖A(p2)

    ) ∣

    p2=µ2= 1

    ◮ complement with the normalization conditions

    Γ‖A(p2)

    p2=µ2= m2

    d

    dp2Γc(p

    2)∣

    p2=µ2= 1

    ⇒ quantitatively, almost no change

    ◮ generalize to the decomposition

    Γ(2)A,µν

    (p) =(

    Γ⊥A (p2)− ζΓ

    ‖A(p2)

    )

    (

    δµν −pµpν

    p2

    )

    + Γ‖A(p2)

    (

    ζδµν + (1 − ζ)pµpν

    p2

    )

    and impose the normalization condition

    d

    dp2

    (

    Γ⊥A (p2)− ζΓ

    ‖A(p2)

    ) ∣

    p2=µ2= 1

    22 / 57

  • ◮ integrating the Callan-Symanzik equation for the proper gluonic 2-point function yields

    ∂p2

    (

    Γ⊥A (p2, µ2)− ζΓ

    ‖A(p2, µ2)

    )

    = exp

    (

    ∫ p2

    µ2

    dµ′ 2

    µ′ 2γA(µ

    ′ 2)

    )

    then integrate over p2 with the initial condition inferred by locality

    Γ⊥A (p2 = 0, µ2) = Γ

    ‖A(p2 = 0, µ2)

    ◮ in the IR limit µ2 ≪ m2,

    βg = µ2 d

    dµ2g =

    g

    2

    (

    γA + 2γc)

    ≈g

    2γA =

    g

    2µ2

    d

    dµ2ln ZA

    and to 1-loop order

    µ2d

    dµ2ln ZA =

    Ng2

    (4π)2

    (

    −1

    12+

    ζ

    4

    )

    ◮ IR safety (βg > 0) for ζ > 1/3, the simple derivative scheme corresponds to ζ = 1;the positivity of the beta function arises from the momentum dependence of the

    longitudinal part Γ‖A(p2)!

    ◮ in the following, consider only the critical case ζ = 1/3

    23 / 57

  • running coupling constant g(µ)

    10-4

    10-2

    100

    102

    104

    p [GeV]

    0

    5

    10

    15g(

    p)

    24 / 57

  • running mass parameter m2(µ)

    10-4

    10-2

    100

    102

    104

    p [GeV]

    0

    0.2

    0.4

    0.6

    0.8

    1

    m2

    [GeV

    2 ]

    25 / 57

  • gluon propagator function GA(p2), critical derivative scheme

    0 1 2 3 4 5p [GeV]

    0

    1

    2

    3

    4

    GA

    (p)

    26 / 57

  • gluon dressing function FA(p2) = p2GA(p

    2), critical derivative scheme

    0 1 2 3 4 5p [GeV]

    0

    0.5

    1

    1.5p2

    GA

    (p)

    27 / 57

  • Independent running couplings

    ◮ breaking of BRST symmetry destroys the relation between the different renormalizedcoupling constants

    ◮ define the renormalized ghost-gluon coupling constant defined from the renormalizedproper ghost-gluon vertex as before, define the renormalized three-gluon couplingconstant from the renormalized proper three-point vertex at the symmetry pointp21 = p

    22 = p

    23 = µ

    2

    ◮ renormalized four-gluon coupling constant set equal to the renormalized three-gluoncoupling constant for the time being

    ◮ integration of the Callan-Symanzik equations with two independently running couplingconstants and a running mass parameter: BRST symmetry and usual non-massivebehavior recovered in the UV, only two adjustable parameters (fine tuning condition)

    28 / 57

  • gluon propagator GA(p2) in 4 dimensions,

    two coupling constants

    0 1 2 3 4p [GeV]

    0

    1

    2

    3

    4

    GA

    (p)

    29 / 57

  • gluon dressing function FA(p2) = p2GA(p

    2) in 4 dimensions,two coupling constants

    0 1 2 3 4 5p [GeV]

    0

    0.5

    1

    1.5

    p2 G

    A(p

    )

    30 / 57

  • ghost-gluon vertex function at the symmetry point p2 = q2 = k2

    in 4 dimensions, two coupling constants,compared to an approximate solution of the Dyson-Schwinger equations

    SU(2) lattice data: Cucchieri, Maas, Mendes 2008

    0 1 2 3 4 5 6 7p [GeV]

    1

    1.1

    1.2

    1.3

    1.4

    DA

    cc(p

    2 ,p2

    ,2π

    /3)

    1 coupling2 couplingsDSE

    at tree level, the vertex function is equal to one

    31 / 57

  • three-gluon vertex function at the symmetry point p21 = p22 = p

    23

    in 4 dimensions, two coupling constants,compared to an approximate solution of the Dyson-Schwinger equations

    SU(2) lattice data: Cucchieri, Maas, Mendes 2008

    0 1 2 3 4 5p [GeV]

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    DA

    3 (p2

    ,p2 ,

    2π/3

    )

    2 couplingsDSE1 coupling

    32 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    33 / 57

  • Dynamical quarks

    ◮ success in Yang-Mills theory motivates the use of one-loop Callan-Symanzikrenormalization group equations in full QCD;hope to describe dynamical mass generation by introducing running quark massparameters, without a representation of its dynamical origin (chiral condensate)

    ◮ first study by Peláez, Tissier and Wschebor [Peláez, Tissier, Wschebor 2014]:reasonable representation of the mass function M(p2), but not of the dressing function(field renormalization) Z (p2) of the full quark propagator

    Z (p2)

    ip/+ M(p2)

    (two-loop contributions important?)

    ◮ no dynamical mass generation in the chiral limit [Peláez, Tissier, Wschebor 2015]

    34 / 57

  • quark mass function Mu,d (p2) in 4 dimensions for Nf = 2 + 1 flavors,

    one-loop renormalization group improved:optimized fit, leading to a less satisfactory fit of the unquenched gluon propagator

    Peláez, Tissier, Wschebor 2014

    lattice data: Bowman et al. 2004, 2005

    0 1 2 3 4 5

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    p HGeVL

    MHpLHG

    eVL

    35 / 57

  • quark mass function Mu,d (p2) in 4 dimensions for Nf = 2 + 1 flavors,

    one-loop renormalization group improved:parameters adjusted for an optimized fit to the unquenched gluon propagator

    Peláez, Tissier, Wschebor 2014

    lattice data: Bowman et al. 2004, 2005

    0 1 2 3 4 5

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    p HGeVL

    Mu,

    dHpLHG

    eVL

    36 / 57

  • quark dressing function Zu,d (p2) in 4 dimensions for Nf = 2 + 1 flavors,

    one-loop renormalization group improved:parameters adjusted for an optimized fit to the quark mass function

    Peláez, Tissier, Wschebor 2014

    lattice data: Bowman et al. 2005

    0 1 2 3 4 5

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    p HGeVL

    Zu,

    dHpL

    37 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    38 / 57

  • General strategy

    ◮ analyze the description of dynamical mass generation through the Callan-Symanzikequations in a simpler gauge theory:QED in D = 3 Euclidean space-time dimensions in the Landau gauge (with Juan PabloGutiérrez)

    ◮ for a direct comparison with Dyson-Schwinger equations, use the quenched and therainbow ladder approximations (tree-level photon propagator and electron-photonvertex; lead to a closed gap equation for the electron mass function)

    ◮ note: these approximations are not entirely consistent for the renormalization of thetheory

    39 / 57

  • Self-energy

    ◮ begin with the one-loop renormalization of QED3 in the quenched and rainbow ladderaproximations

    ◮ one-loop electron self-energy in 3 dimensions

    convergent for p2 > 0

    ◮ for a massless photon (quenched approximation),

    Σ(p) =e202π

    M0

    parctan

    (

    p

    M0

    )

    with p =√

    p2, M0 the bare electron mass and e0 the bare coupling constant

    40 / 57

  • Renormalization◮ the bare one-loop electron propagator is

    [

    ip/+ M0 +e202π

    M0

    parctan

    (

    p

    M0

    )

    ]−1

    ◮ implement as a normalization condition that the renormalized electron propagator formomenta p with p2 = µ2 (µ the renormalization scale) is

    Z (µ)

    ip/+ M(µ)

    ◮ this condition defines Z (µ) = 1 and the renormalized mass

    M(µ) = M0 +e202π

    M0

    µarctan

    (

    µ

    M0

    )

    +O(e40)

    ◮ as a consequence of the rainbow ladder approximation and Z (µ) = 1, therenormalized coupling constant

    e(µ) = e0 ≡ e

    ◮ as part of the renormalization procedure, all quantities are expressed in terms of therenormalized mass and coupling constant (as the — in principle — experimentallyaccessible quantities), in particular

    M0 = M(µ)−e2

    M(µ)

    µarctan

    (

    µ

    M(µ)

    )

    +O(e4)

    41 / 57

  • The NJL argument

    ◮ usually, one is not interested in the value of the bare mass M0 as a function of therenormalized mass M(µ),

    M0 = M(µ)−e2

    M(µ)

    µarctan

    (

    µ

    M(µ)

    )

    (1)

    (at one-loop level in the renormalized theory, using the quenched and rainbow ladderapproximations), but particularly in the chiral limit M0 → 0, equation (1) is relevant

    ◮ the same equation (1) follows from the original argument of Nambu and Jona-Lasinio(NJL) [Nambu, Jona-Lasinio 1961] applied to QED3:add a contribution δM to the bare mass M0 such that the electron self-energycalculated with the new mass M = M0 + δM and including the counterterm (−δM)vanishes,

    Σ(p) = −δM +e202π

    M

    parctan

    ( p

    M

    )

    = 0

    ◮ unlike in the theory originally considered by NJL, this is only possible at one (arbitrarilychosen) momentum scale µ (on the other hand, no momentum cutoff needs to beintroduced here), thus

    M0 +e202π

    M

    µarctan

    ( µ

    M

    )

    = M ,

    which is equation (1) with e0 = e and M = M(µ)

    42 / 57

  • Solving for M(µ)

    ◮ in the chiral limit, equation (1) becomes

    0 = M0 = M(µ)

    [

    1 −e2

    2πµarctan

    (

    µ

    M(µ)

    )]

    ◮ there is a trivial solution, M(µ) = 0, and a nontrivial one,

    M(µ) =µ

    tan(2πµ/e2)

    as long as

    e2

    2πµ

    π

    2≥ 1 ⇔ µ ≤

    e2

    4;

    in particular,

    M(µ = 0) =e2

    ◮ at µ = e2/4, the nontrivial solution coincides with the trivial solution;for µ > e2/4 only the trivial solution exists

    43 / 57

  • Varying M0

    ◮ for M0 > 0, equation (1) can only be solved numerically; however, two limits can beestablished analytically:

    M(µ = 0) = M0 +e2

    2π, M(µ → ∞) = M0

    ◮ a plot of M(µ) for several values of M0, in units of e2/2π (both µ and M):

    1 2 3 4 5

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    44 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    45 / 57

  • Linear approximation

    ◮ Dyson-Schwinger equation for the mass function M(p2) in QED3 in the Landau gauge,using the quenched and the rainbow ladder approximations:

    M(p2) = M0 + 2e2

    d3k

    (2π)31

    (p − k)2M(k2)

    k2 + M2(k2)

    ◮ in the chiral limit M0 → 0 with the (additional) linear approximation

    M(k2)

    k2 + M2(k2)≈

    M(k2)

    k2 + M2(0),

    one finds the exact solution

    M(p2) =e2

    1

    1 + (4πp/e2)2,

    ◮ in the extreme limits,

    M(p2 = 0) =e2

    4π, M(p2 → ∞) ∝

    1

    p2

    46 / 57

  • Angular approximation

    ◮ alternatively, one may use (for M0 ≥ 0) the angular approximation to evaluate thek -integral

    d3k

    (2π)3M(k2)

    k2 + M2(k2)

    1

    (p − k)2

    =1

    (2π)2

    ∫ ∞

    0

    dkk2M(k2)

    k2 + M2(k2)

    ∫ 1

    −1

    d cos θ

    k2 + p2 − 2p k cos θ

    =1

    (2π)2p

    ∫ ∞

    0

    dkk M(k2)

    k2 + M2(k2)ln

    k + p

    |k − p|

    ◮ now

    for k ≫ p , lnk + p

    |k − p|≈

    2p

    k;

    for k ≪ p , lnk + p

    |k − p|≈

    2k

    p,

    and the angular approximation is

    lnk + p

    |k − p|≈

    2p

    kΘ(k − p) +

    2k

    pΘ(p − k)

    under the k -integral

    47 / 57

  • Comparison in the chiral limit

    ◮ in the angular approximation, the gap equation can be converted (exactly) into adifferential equation which is subsequently numerically solved; for large momenta, onefinds analytically

    M(p2 → ∞) = M0 ,

    and particularly in the chiral limit M0 → 0,

    M(p2 → ∞) ∝1

    p2

    ◮ Comparison of the three mass functions, M(µ) from the one-loop renormalization orthe NJL argument, and M(p2) from the Dyson-Schwinger equation in the linear and theangular approximations, in the chiral limit (in units of e2/2π):

    0.5 1.0 1.5 2.0 2.5 3.0

    0.2

    0.4

    0.6

    0.8

    1.0

    48 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    49 / 57

  • Callan-Symanzik equations

    ◮ the bare parameters and the bare n-point functions cannot depend on therenormalization scale µ, in particular, at the one-loop level,

    µdM(µ)

    dµ= µ

    ∂µ

    [

    e202π

    M0

    µarctan

    (

    µ

    M0

    )

    ]∣

    M0,e0 fixed

    =e2

    [

    M2(µ)

    µ2 + M2(µ)−

    M(µ)

    µarctan

    (

    µ

    M(µ)

    )]

    , (2)

    expressing the bare quantities in terms of the renormalized ones in the last step(renormalization group improvement)

    ◮ using the normalization condition for the renormalized electron propagator

    Z (µ)

    ip/+ M(µ)

    at µ = p, the renormalization group improved propagator is

    1

    ip/+ M(p)

    where M(p) is the function obtained by integrating the differential equation (2)

    50 / 57

  • Results

    ◮ no mass is generated dynamically in the chiral limit through the integration of theCallan-Symanzik equation (2)

    ◮ Comparison of the analytical solution of the Dyson-Schwinger gap equation in thechiral limit with the solution of the Callan-Symanzik equation with the same initial valueM(p2 = 0):

    0.5 1.0 1.5 2.0 2.5 3.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    51 / 57

  • M(p2 = 0) as a function of M(p2 → ∞) = M0

    in the one-loop renormalization of the theory or the NJL argument,

    the angular and the linear approximations of the Dyson-Schwinger gap equation

    and the Callan-Symanzik renormalization group equation

    ææ

    0.2 0.4 0.6 0.8 1.0

    0.5

    1.0

    1.5

    2.0

    52 / 57

  • Contents

    Introduction

    Perturbation theory for IR Yang-Mills theory

    Callan-Symanzik equations

    Dynamical generation of quark masses

    Renormalization of QED3 and the NJL argument

    The gap equation

    Renormalization group equations

    Conclusions

    53 / 57

  • Summary

    ◮ quasi-analytic and systematic description of the correlation functions of Landau gaugeYang-Mills theory: introduce a gluonic mass term, solve the Callan-Symanzik equations

    ◮ this success motivates to try the same approach for the description of dynamical quarkmass generation in QCD; a first exploration by Peláez, Tissier and Wschebor isencouraging, but not entirely successful

    ◮ look at a simpler theory first: QED in 3 space-time dimensions in the quenched andrainbow ladder approximations (for comparison to the solution of the Dyson-Schwingergap equation)

    ◮ the standard one-loop renormalization of the theory leads to the same equation for theeffective mass as Nambu-Jona-Lasinio’s original argument

    ◮ an effective (or renormalized) mass is generated even in the chiral limit, but itsdependence on the momentum scale is not satisfactory

    ◮ applying Callan-Symanzik renormalization group equations leads to a much bettermomentum scale dependence, judging from a comparison with the solution of theDyson-Schwinger gap equation (here: in the linear and angular approximations)

    ◮ the value of the mass M(p2 = 0) generated by the renormalization group is quitesimilar to the one generated by the Dyson-Schwinger equation (in the angularapproximation) for not too small bare masses (M0 & 0.1e

    2/(2π)), but there is nodynamical mass generation in the chiral limit by the Callan-Symanzik equations

    54 / 57

  • Outlook

    ◮ Yang-Mills theory: current calculations in 3 space-time dimensions

    ◮ continue work on the vertex functions, compare to new lattice and Dyson-Schwingerresults

    ◮ proceed to two-loop level (with renormalization group improvement)

    ◮ extend the formalism to 2 space-time dimensions (scaling solutions)

    ◮ dynamical fermion mass generation: to complete the comparison to theDyson-Schwinger gap equation, look at the numerical solutions of the full equation

    ◮ before moving on to QCD, one may consider QED3 without the quenched and rainbowladder approximations in the renormalization group approach (those are not consistentapproximations in the renormalization of the theory)

    ◮ consider alternative renormalization schemes, different space-time dimensions andepsilon expansions

    55 / 57

  • References

    ◮ Bogolubsky et al. 2009: I.L. Bogolubsky et al., Phys. Lett. B 676, 69

    ◮ Bowman et al. 2004: P.O. Bowman et al., Phys. Rev. D 70, 034509

    ◮ Bowman et al. 2005: P.O. Bowman et al., Phys. Rev. D 71, 054507

    ◮ Cucchieri, Maas, Mendes 2008: A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 77,094510

    ◮ Cucchieri, Mendes 2008a: A. Cucchieri, T. Mendes, Phys. Rev. Lett. 100, 241601

    ◮ Cucchieri, Mendes 2008b: A. Cucchieri, T. Mendes, Phys. Rev. D 78, 094503

    ◮ Dudal et al. 2008: D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Verschelde,Phys. Rev. D 78, 065047

    ◮ Dudal, Oliveira, Vandersickel 2010: D. Dudal, O. Oliveira, N. Vandersickel, Phys. Rev. D81, 074505

    ◮ Gribov 1978: V.N. Gribov, Nucl. Phys. B139, 1

    ◮ Nambu, Jona-Lasinio 1961: V. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345

    ◮ Peláez, Tissier, Wschebor 2014: M. Peláez, M. Tissier, N. Wschebor, Phys. Rev. D 90,065031

    ◮ Peláez, Tissier, Wschebor 2015: M. Peláez, M. Tissier, N. Wschebor, Phys. Rev. D 92,045012

    56 / 57

  • ◮ Tissier, Wschebor 2010: M. Tissier, N. Wschebor, Phys. Rev. D 82, 101701

    ◮ Tissier, Wschebor 2011: M. Tissier, N. Wschebor, Phys. Rev. D 84, 045018

    ◮ Weber 2012: A. Weber, Phys. Rev. D 85, 125005

    ◮ Weber, Dall’Olio, Astorga 2016: A. Weber, P. Dall’Olio, F. Astorga, Int. J. Mod. Phys. E25, 1642002

    ◮ Zwanziger 1989: D. Zwanziger, Nucl. Phys. B323, 513

    ◮ Zwanziger 2002: D. Zwanziger, Phys. Rev. D 65, 094039

    57 / 57

    IntroductionPerturbation theory for IR Yang-Mills theoryCallan-Symanzik equationsDynamical generation of quark massesRenormalization of QED3 and the NJL argumentThe gap equationRenormalization group equationsConclusions