43
Calibration and Dynamic Matching in Data Converters Kenneth C. Dyer, John P. Keane 1 , and Stephen H. Lewis 2 1 Keysight Technologies Inc., Santa Clara, CA USA 2 University of California, Davis, CA USA 1

Calibrationand Dynamic Matching in Data Convertersweb.ece.ucdavis.edu/~lewis/213/isscc16.pdf · Calibrationand Dynamic Matching in Data Converters Kenneth C. Dyer, JohnP. Keane1,

Embed Size (px)

Citation preview

Calibration and Dynamic Matching in Data Converters

Kenneth C. Dyer, John P. Keane1, and Stephen H. Lewis2

1 Keysight Technologies Inc., Santa Clara, CA USA

2 University of California, Davis, CA USA

1

Outline

• Calibration of DAC Mismatch

• Dynamic Element Matching

• Calibration of Pipelined ADCs

• Calibration of Time-Interleaved ADCs

2

ADCs use DACs

Vin +

Comparator

LogicOut

DAC

SAR ADC

Vin+ Σ

Integrator

∫+−

Comparator

DAC

Dig.Filter

Out

∆Σ ADC

• DACs can limit ADC performance

• DAC calibration improves ADCs

3

Laser Trimming an R-2R Ladder DACIout

2RN−2

RN−1 ≈ R RN ≈ R

IN−2

BN−2

2RN−1

IN−1

BN−1

2RN

IN

BN

IT

2R

Cal

• Holloway and Norton, ISSCC76 [1]

• If IN−1 < IN + IT , trim RN

• If IN−1 > IN + IT , trim 2RN−1

• Single-pass trim (start on right and move to left) improves linearity

4

Fuse Trimming• Early ref: McGlinchey, ISSCC82 [2] (Trims at wafer sort)

R0

VBIAS1

VBIAS3

SR bitEnableF0

VDD=5 V R1Poly

Output

SR bitEnableF1

• de Wit et al., JSSC 4/93 [3] (Uses low volt pulses after packaging)

• Fuses may not open completely and may heal

• Blow either R0 or R1 and compare to each other

• Customers like trimming

5

Analog Foreground Cal. of Capacitor Mismatch

C1

VFS

Vtop = 0

C2

t < 0

C1

Vtop

C2

VFSt > 0

t

VtopC2>C1

C1>C2

2C C

Vtop

C C

SwitchArray

R-StrDAC

Calib.RAM• Lee et al., JSSC 12/84 [4]

• Used to improve linearity in a charge-redistribution SAR ADC

• Vtop driven back to zero by R-string DAC (low DNL)

• Errors measured at powerup and can be remeasured any time

• Does not require lasers or non-volatile memory

• Does not require special fab or test equipment

6

Analog Background Cal. of Current Mismatch

+Vgs1−

I1

+Vgsi−

Ii

+Vgsn−

In

Switch array

Iout To calibrate Ii

Ii = Iref

Iref

+Vgsi−

• Groeneveld et al., JSSC 12/89 [5]

• Adjusts each Vgs to set I1 = ... = Ii = ... = In = Iref

• Uses an extra current source

• Early example of background calibration

7

Quadratic Voltage Coefficient

AnalogInput

Digital Output

Ideal

With QVC

V1

Dv1

V2

Dv2

Vr

DvrVrh

R1

R2

Vrl

+V1−+V2−

Vr

+

To top plate of main array

Cg

VoNonlin Function GenVo=k(V

2r − V2

in)Vin

Vr

VnVp• Tan et al., JSSC 12/90 [6]

• C ≈ C0(1 + α1V + α2V2)

• Quadratic VC causes 3rd order error (Q =∫C · dV )

• Cancel error with equal and opposite correction voltage

• Cal on chip with V1 ≈ V2 ≈ Vr/2 and V1 + V2 = Vr

• Use error= Dv1 + Dv2 − Dvr to set Cg to cal gain

8

Digital Foreground Calibration of DAC Mismatch

Vin Σ H1(z)4-bitADSC

24×16-bitEPROM

Out

4-bitDAC

4 16

4

• Cataltepe et al., ISCAS 1989 [7]

• If loop gain→ ∞, DAC output= Vin on average

• If DAC is nonlinear, ADSC output has inverse nonlinearity

• Program EPROM with same nonlinearity to linearize the modulator

• Reconfigure as a single-bit∆Σ to measure DAC in foreground

• In∆Σ converter, downsample after EPROM

• Early example of on-chip digital foreground calibration

9

Dynamic Element Matching

IMirror

I1 ≈ I/2

I2 ≈ I/2Switches

I3

I4

Clk

• van de Plassche, JSSC 12/76 [8]

• Use matched elements with time-division multiplexing

• I3 = I4 on average even if I1 6= I2

10

Dynamic Matching in a Delta-Sigma DAC

Dig.In3 3-to-7Decoder

7

Randomizer

Unit Element1

Unit Element8

8Σ Analog

Out1

RNG

12

• Carley and Kenney, CICC 1988 [9]

• Randomize DAC elements

• Decorrelate DAC elements usage from input

• Nonlinearity improves on average

• Nonlinearity→ white noise

• ILA (Leung and Sutarja, TCASII 1/92 [10]) gives shaped noise

11

Data-Weighted Averaging

VDD

+VO−

Code = 110 VDD

+VO−

Code = 011

0 0.05 0.1 0.15 0.2 0.25−160−140−120−100−80−60−40−20

0

fin/fs

dB

FixedRandomDWA

• Baird and Fiez, JSSC 12/95 [11]

• Only care about low-freq. noise→ shape error to high freq.

• Use DAC elements in sequence

• Higher-order shaping is possible

12

Pipelined ADC

VinSHA

Stage

1

Σ G

SHA

Vo1Vin1

ADSC DAC

d1

−VDAC1

Stage

N

+

• Insensitive to offset errors with redundancy

• Main Performance limitations:

Interstage gain errors

DAC nonlinearity

13

Ratio-Independent Gain

Vi

φ1

C2

+∞

C1

C2

+

φ2

C1

Vo=C2

C1Vi

Vi

φ3

C2

+∞

C1

C2

+

φ4

C1

Vo=2Vi

• Li et al., JSSC 12/84 [12]

• Requires high open-loop gain and 4 clock phases

• Reference Refreshing, Shih et al., JSSC 8/86 [13]

• Correlated Double Sampling, Nagaraj et al., TCAS 5/87 [14]

• Error Averaging, Song et al., JSSC 12/88 [15]

• Customers like these techniques, which improve linearity14

Analog Calibration of a Pipelined ADCφ1

C1 C2 C3 C4

VR

−+

CF

φ2

C1 C2 C3 C4

−+

Logic

CFVR

• Lin et al., JSSC 4/91 [16]

• Op amp is offset canceled with aux. input

• Compare each samp. cap to CF and adjust to match

• Use opamp as comparator preamp (Threshold= VR )

15

Digital Calibration of a Pipelined ADC

Vi

SHA

1

1-bADSC0 1-b

DAC+VR/2−VR/2

−Σ

+ Vi ± VR/2SHA

< 2

Vi

Ideal

Code

Vi

Missing Codes

Code

Vi

Missing Dec Lev

Code

• Karanicolas et al., JSSC 12/93 [17]

• Digital cal. does not create or move decision levels

• Set interstage gain < 2 to avoid missing decision levels

• Add extra stages to introduce redundancy

• Then calibration can be done digitally

16

Add Dither to ADC Input

Vin 1SHA+

Σ+

Σ G ADSC2

ADSC1 DAC1−

+Dout

×Accum

DACGain

RNG

DACDither

+

• Jewett et al., ISSCC97 [18]

• Subtractive dither improves DNL and SFDR

• Accumulator adjusts gain of dither DAC to remove dither

17

Add Dither to ADSC Output

1

SHA+

Σ G1 ADC2

Vin

ADSC1+

Σ DAC1−

+Σ Dout

RNG

+

+

×+

Σ

+

×

Accum

1/G1

µ

• Hilton, HP Journal 10/93 [19]

• Siragusa et al., Elect. Let. 3/00 [20]

• Accum adjusts 1/G1 until G1 → G1• Increases required DAC resolution

18

Add Dither to ADSC Input

1

SHA+

Σ G1 ADC2

Vin+

Σ

ADSC1 DAC1

Dout×

× Accum1/G1

−µRNG ×−

0.25 ×

+

• Li and Moon, TCASII 9/03 [21]

• Accum adjusts 1/G1 until G1 → G1• Low complexity but only calibrates for Vin near ADSC1 thresholds

• Fetterman et al., CICC 5/99 [22] (dither without calibration)19

Redundant Residue Mode

Voi

−VR

Vini

−0.5VR 0

Mode= 0

0.5VR VR

VR

0

−VR

Mode= 1

• Murmann and Boser, JSSC 12/03 [23]

• Requires about 1 extra bit of resolution

• Equivalent to adding dither to ADSC and DAC inputs

• Ideally both modes give identical results

• Background calibrates for gain errors and variation

• Shows that calibration can reduce power dissipation

20

Tracking Bandwidth

VinN-bitADC

Dout

(Vin + ǫ · Dither)

× µAccum

Dither

Dither

Weight

n

EnlargeTconverge

• Weight[n + 1] = Weight[n] + µ(Vin + ǫ · Dither) · Dither

• Steady state SNR ∝ 1/µ: Need small µ ∝ 1/22N

• Tracking Bandwidth∝ µ: Need large µ ∝ 1/Tconverge

• Can improve by removing Vin before correlation

21

Two-Channel or Split ADC Architecture

Vin

ADC1

Dither1

+Σ × Dout

0.5

ADC2

Dither2

+Σ Ddither

+

• Li and Moon, TCASII 9/03 [21] and McNeill et al., JSSC 12/05 [24]

• Reduces Vin in Ddither

• Increases tracking bandwidth dramatically

• Requires little extra power dissipation if noise limited

22

Calibrating with a Parallel ADC

SHA

FastInaccurateADC

fs

DSP

↓M

Σe+

−SlowCalibratedADC

fs/M

Dout

Vin

fs

• Wang et al. CICC 9/03 [25] and Chiu et al. TCASI 1/04 [26]• Uses Vin to calibrate• Input SHA is not required (Wang et al., JSSC 10/09 [27])• Slow ADC:

− Needs high linearity (achieved through calibration)− Can have high noise & low power dissipation− Can have low resolution with enough dither

23

DEM and ADC Calibration

SHA +Σ

+Σ G1 ADC2

+Vin

ADSC1 DAC1 DAC2 DAC3− − −

+

Σ

RNG1+ −

Σ

RNG2−

B

×

ErrorTable

·−

Σ

+Σ Dout

×

µ

H

+

+

• Use DEM for DAC inside ADC: Hilton, HPJ 10/93 [19] Galton, TCASI 3/00 [28]• DAC element control bits B are uncorrelated with ADC input, so canmeasure DAC mismatch in background by correlating with ADC output

• Can then correct digitally and remove with lookup table• Residual DAC nonlinearity appears as noise

24

Time-Interleaved ADCs

Vin(t)

AnalogDemux

fs

ADC1

ADC2

ADCMDigitalMux

fs/M

fs = 1/T

Dout(nT)

• Black and Hodges, JSSC 12/80 [29]

• Increases throughput by M

• Channel offset mismatches→ Periodic additive pattern

• Channel gain mismatches→ Amplitude modulation

• Channel sample-time errors→ Phase modulation

25

Chopper-Based Offset Calibration

×

C[m]

SHA1 ADC1Analog

Input

Chopping SHAS1

Y1×

C[m]

a1

Notch Filter

×

Accum

V1

µ

• van der Ploeg et al., JSSC 12/01 [30] and Jamal et al., JSSC 12/02 [31]

• C[m]= ±1 (Random, Zero Mean)

• Cancels SHA & ADC Offsets w/o Spectral Nulls

• Apply separately to each channel

• Used by Janssen et al. [32] and Setterberg et al., ISSCC13 [33]

26

Input Dither to Measure Channel Gain

Vin+

Σ ADC ×+

Σ Dout

GA

RNG

1-b DAC

+

GD×

−µ

Accum

G

• Fu et al., JSSC 12/98 [34]

• GA · G = 1/GD

• Calibrates gain mismatch with interleaved channels

• Used by Setterberg et al., ISSCC13 [33]

27

Extra Parallel Channel for Timing Calibration

Vin(t)

φ1ADC1

φMADCM

MuxDout(nT)

Timing CalPhase Gen.ClkIClkQ

φ1 φM

ClkIfs

1-bitFlash ADC

• El-Chammas and Murmann, JSSC 4/11 [35]

• Uses parallel flash channel to calibrate timing errors by

maximizing correlation between flash ADC and interleaved channels28

Find Derivative ( D) for Timing Calibration

Vin(t)

∆R φ0

CADCt

φ0

CADC0

CADCi

−ΣD

× ×

µ

Accum

∆tiDelayφi

+

+Σe

• Stepanovic and Nikolic, JSSC 4/13 [36]

• ADCt and ADC0 are ref ADCs that can sample at same time as any ADCi• e = −D∆t→ ∆t [new]= ∆t [previous]± µ · (de2/d∆t)• ∆t [new]= ∆t [previous]+ µ · 2 · e · D

• D(s) = sC∆R/((1 + sCR)(1 + sC(R + ∆R)))

29

Flash-Assisted Time-Interleaved ADCs

Vin(t)

φ1ADC1

φ2ADC2

φMADCM

Calib.Dout(nT)

φ

fs

FlashADC Offset Corr.

Timing Corr.ClockGen

φ1

φM

• Use flash ADC to calibrate offset and timing errors

• Sung et al., A-SSCC 2013 [37] and Lee et al., ISSCC14 [38]

• Sung et al., ISSCC15 [39], (uses interleaved folding flash ADC)30

First-Rank SHA

Vin(t)

fs

SHA

1

AnalogDemux

ADC1

ADC2

ADCMDigitalMux

fs/M

fs = 1/T

Dout(nT)

• Poulton et al., JSSC 12/87 [40]

• First-rank SHA sets sampling instants

• Reduces jitter but requires high power dissipation

• Used by Setterberg et al., ISSCC13 [33]

(14-bit 2.5-GS/s ADC with 70 fs RMS jitter and SHA power= 2.5 W)

31

Analog Calibration

Vin+ Σ × ADC Channel Dout

Voff

DAC

−Voff

G

DAC

G

Clock

∆t

• Advantages:

Increases dynamic rangeDoes not require extra bits to reduce errors below 1 LSBReduces latencyCan work both above and below Nyquist

• Disadvantages:

Increases design and verification timeSensitive analog circuits must accommodate correction circuitsDifficult to move to new processes

32

Digital Calibration

Vin ADC Channel+ Σ × Dig. Delay Dout

Clock Voff

G T iming

• Advantages:

Simplifies verification and portability to new processesSimplifies changes to sensitive analog circuitsDigital circuits scale in advanced processes

• Disadvantages:

Reduces dynamic rangeIncreases latency (big problem in communications applications)Timing error calibration limits bandwidth to one Nyquist zone

33

Types of Interleaved CalibrationsAuthor Year Offset Cal. Gain Cal. Timing Cal.

Poulton [40] 1987 Analog FG Analog FG First-Rank SHA

Dyer [41] 1998 Analog BG Analog BG First-Rank SHA

Fu [34] 1998 Digital BG Digital BG First-Rank SHA

Poulton [42] 2002 Digital FG Digital FG Analog FG

Jamal [31] 2002 Digital BG Digital BG Digital BG

El-Chammas [35] 2011 Analog FG Analog FG Analog BG

Doris [43] 2011 Analog FG Analog FG NA

Stepanovic [36] 2013 Digital BG Digital BG Analog BG

Janssen [32] 2013 Analog+Dig BG Analog BG NA

Setterberg [33] 2013 Digital BG Digital BG First-Rank SHA

Le Dortz [44] 2014 Digital BG Digital BG Digital BG

Kull [45] 2014 Digital FG Analog FG Analog FG

Lee [38] 2014 Analog FG NA Analog BG

Sung [39] 2015 Analog BG NA Analog BG

34

Problematic Signals for Background Calibration• Customers expect consistent convergence time and tracking rate

regardless of input

• Some inputs cause slow tracking and/or misconvergence due to

− Highly non-uniform sample distribution

(DC inputs, steps, slow NRZ data, burst mode data)

− Periodic components at certain frequencies

(Harmonics of fS/N for N interleaved channels)

− Inputs exceeding the full-scale range

− Inputs correlated with dither

• Subtractive dither and/or chopping can help

• Customers must be aware of any remaining signal dependence

35

Uniformly Distributed Multi-level Dither

Vin Σ Stage1

Σ Stage2

Σ Stage3

L1 levels L2 levels L3 levels

• Add dither in analog domain and subtract in digital domain

• With binary dither, convergence depends on input signal amplitude

Panigada et al., JSSC 12/09 [46] and Rakuljic et al., TCASI 3/13 [47]

• Multilevel dither: Levy, TCASI 11/13 [48] and Ali et al., JSSC 12/14 [49]

• Levy: use co-prime dither: L1 = 3, L2 = 5, L3 = 7, and L4 = 9

• Ali: use L1 = 9, L2 = 3, and L3 = 3

36

Conclusion

• Calibration has evolved from factory trimming to embedded

calibration to foreground calibration to background calibration

• All these techniques are used today

• Customers like the improvements from the newest techniques

but prefer no cal, factory cal, or embedded cal

• The flexibility of general-purpose converters is important

but so are the improvements from foreground and background cal

• Ultimately, application-specific specialization is inevitable

37

References

[1] P. Holloway and M. Norton, “A High-Yield, Second Generation 10-Bit Monolithic DAC,” IEEE InternationalSolid-State Circuits Conference, pp. 106–107, Feb. 1976.

[2] G. McGlinchey, “A Monolithic 12b 3µs ADC,” IEEE International Solid-State Circuits Conference, pp.80–81, Feb. 1982.

[3] M. de Wit, K.-S. Tan, and R. K. Hester, “A Low-Power 12-b Analog-to-Digital Converter with On-ChipPrecision Trimming,” IEEE J. of Solid-State Circuits, vol. 28, No. 4, pp. 455–461, Apr. 1993.

[4] H.-S. Lee, D. A. Hodges, and P. R. Gray, “A Self-Calibrating 15 Bit CMOS A/D Converter,” IEEE J. ofSolid-State Circuits, vol. SC-19, No. 6, pp. 813–819, Dec. 1984.

[5] D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, “A Self-CalibrationTechnique for Monolithic High-Resolution D/A Converters,” IEEE J. of Solid-State Circuits, vol. 24, No. 6,pp. 1517–1522, Dec. 1989.

[6] K.-S. Tan, S. Kiriaki, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “ErrorCorrection Techniques for High-Performance Differential A/D Converters,” IEEE J. of Solid-State Circuits,vol. 25, No. 6, pp. 1318–1327, Dec. 1990.

[7] T. Cataltepe, A. R. Kramer, L. E. Larson, G. C. Temes, and R. H. Walden, “Digitally Corrected Multi-bit Σ∆

Data Converters,” IEEE International Symposium on Circuits and Systems, pp. 647–650, May 1989.

[8] R. J. van de Plassche, “Dynamic Element Matching for High-Accuracy Monolithic D/A Converters,” IEEEJ. of Solid-State Circuits, vol. SC-11, No. 6, pp. 795–800, Dec. 1976.

38

[9] L. R. Carley and J. Kenney, “A 16-bit 4’th Order Noise-Shaping D/A Converter,” IEEE Custom IntegratedCircuits Conference, pp. 21.7.1–21.7.4, May 1988.

[10] B. H. Leung and S. Sutarja, “Multibit Σ-∆ A/D Converter Incorporating A Novel Class of Dynamic ElementMatching Techniques,” IEEE T. on Circuits and Systems II, vol. 39, No. 1, pp. 35–51, Jan. 1992.

[11] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit∆Σ A/D and D/A Converters using DataWeighted Averaging,” IEEE T. on Circuits and Systems II, vol. 42, No. 12, pp. 753–762, Dec. 1995.

[12] P. W. Li, M. J. Chin, P. R. Gray, and R. Castello, “A Ratio-Independent Algorithmic Analog-to-DigitalConversion Technique,” IEEE J. of Solid-State Circuits, vol. SC-19, No. 6, pp. 828–836, Dec. 1984.

[13] C.-C. Shih and P. R. Gray, “Reference Refreshing Cyclic Analog-to-Digital and Digital-to-AnalogConverters,” IEEE J. of Solid-State Circuits, vol. SC-21, No. 4, pp. 544–554, Aug. 1986.

[14] K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-Capacitor Circuits with ReducedSensitivity to Amplifier Gain,” IEEE T. on Circuits and Systems, vol. CAS-34, No. 5, pp. 571–574, May 1987.

[15] B.-S. Song, M. F. Tompsett, and K. R. Lakshmikumar, “A 12-bit 1-Msample/s Capacitor Error-AveragingPipelined A/D Converter,” IEEE J. of Solid-State Circuits, vol. 23, No. 6, pp. 1324–1333, Dec. 1988.

[16] Y.-M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz Self-Calibrated Pipelined A/D Converter in 3-µm CMOS,”IEEE J. of Solid-State Circuits, vol. 26, No. 4, pp. 628–636, Apr. 1991.

[17] A. N. Karanicolas, H.-S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s Digitally Self-Calibrated PipelineADC,” IEEE J. of Solid-State Circuits, vol. 28, No. 12, pp. 1207–1215, Dec. 1993.

[18] R. Jewett, K. Poulton, K.-C. Hsieh, and J. Doernberg, “A 12b 128MSample/s ADC with 0.05LSB DNL,” IEEEInternational Solid-State Circuits Conference, pp. 138–139, Feb. 1997.

39

[19] H. E. Hilton, “A 10-MHz Analog-to-Digital Converter with 110-dB Linearity,” Hewlett-Packard Journal, vol.44, No. 5, pp. 105–112, Oct. 1993.

[20] E. J. Siragusa and I. Galton, “Gain error correction technique for pipelined analogue-to-digitalconverters,” Electronics Letters, vol. 36, No. 7, pp. 617–618, Mar. 30, 2000.

[21] J. Li and U.-K. Moon, “Background Calibration Techniques for Multistage Pipelined ADCs With DigitalRedundancy,” IEEE T. on Circuits and Systems II, vol. 50, No. 9, pp. 531–538, Sep. 2003.

[22] H. S. Fetterman, D. G. Martin, and D. A. Rich, “CMOS Pipelined ADC Employing Dither to ImproveLinearity,” IEEE Custom Integrated Circuits Conference, pp. 109-112, May 1999.

[23] B. Murmann and B. E. Boser, “A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,”IEEE J. of Solid-State Circuits, vol. 38, No. 12, pp. 2040–2050, Dec. 2003.

[24] J. McNeill, M. C. W. Coln, and B. J. Larivee, “"Split ADC" Architecture for Deterministic DigitalBackground Calibration of a 16-bit 1-MS/s ADC,” IEEE J. of Solid-State Circuits, vol. 40, No. 12, pp.2437–2445, Dec. 2005.

[25] X. Wang, P. J. Hurst, and S. H. Lewis, “A 12-bit 20-MS/s Pipelined ADC with Nested Digital BackgroundCalibration,” IEEE Custom Integrated Circuits Conference, pp. 409-412, Sep. 2003.

[26] Y. Chiu, C. W. Tsang, B. Nikolic, and P. R. Gray, “Least Mean Square Adaptive Digital BackgroundCalibration of Pipelined Analog-to-Digital Converters,” IEEE T. on Circuits and Systems I, vol. 51, No. 1,pp. 38–46, Jan. 2004.

[27] H. Wang, X. Wang, P. J. Hurst, and S. H. Lewis, “Nested Digital Background Calibration of a 12-bitPipelined ADC Without an Input SHA,” IEEE J. of Solid-State Circuits, vol. 44, No. 10, pp. 2780–2789, Oct.2009.

40

[28] I. Galton, “Digital Cancellation of D/A Converter Noise in Pipelined A/D Converters,” IEEE T. on Circuitsand Systems II, vol. 47, No. 3, pp. 185–196, Mar. 2000.

[29] W. C. Black, Jr. and D. A. Hodges, “Time Interleaved Converter Arrays,” IEEE J. of Solid-State Circuits,vol. SC-15, No. 6, pp. 1022–1029, Dec. 1980.

[30] H. van der Ploeg, G. Hoogzaad, H. A. H. Termeer, M. Vertregt, and R. L. J. Roovers, ”A 2.5-V 12-b54-Msample/s 0.25-µm CMOS ADC in 1-mm2 With Mixed-Signal Chopping and Calibration,” IEEE J. ofSolid-State Circuits, vol. 36, No. 12, pp. 1859–1867, Dec. 2001.

[31] S. M. Jamal, D. Fu, N. C.-J. Chang, P. J. Hurst, and S. H. Lewis, “A 10-b 120-Msample/s Time-InterleavedAnalog-to-Digital Converter With Digital Background Calibration,” IEEE J. of Solid-State Circuits, vol. 37,No. 12, pp. 1618–1627, Dec. 2002.

[32] E. Janssen, K. Doris, A. Zanikopoulos, A. Murroni, G. van der Weide, Y. Lin, L. Alvado, F. Darthenay, Y.Fregeais, “A 11b 3.6GS/s Time-Interleaved SAR ADC in 65nm CMOS,” IEEE International Solid-StateCircuits Conference, pp. 464–465, Feb. 2013.

[33] B. Setterberg, K. Poulton, S. Ray, D. J. Huber, V. Abramzon, G. Steinbach, J. P. Keane, B. Wuppermann, M.Clayson, M. Martin, R. Pasha, E. Peeters, A. Jacobs, F. Demarsin, A. Al-Adnani, P. Brandt, “A 14b 2.5GS/s8-Way-Interleaved Pipelined ADC with Background Calibration and Digital Dynamic Linearity Correction,”IEEE International Solid-State Circuits Conference, pp. 466–467, Feb. 2013.

[34] D. Fu, K. C. Dyer, P. J. Hurst, and S. H. Lewis, “A Digital Background Calibration Technique forTime-Interleaved Analog-to-Digital Converters,” IEEE J. of Solid-State Circuits, vol. 33, No. 12, pp.1904–1911, Dec. 1998.

[35] M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With BackgroundTiming Skew Calibration,” IEEE J. of Solid-State Circuits, vol. 46, No. 4, pp. 838–847, Apr. 2011.

41

[36] D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 48, No.4, pp. 971–982, Apr. 2013.

[37] B.-R.-S. Sung, C.-K. Lee, W. Kim, J.-I. Kim, H.-K. Hong, G.-G. Oh, C.-H. Lee, M. Choi, H.-J. Park, and S.-T.Ryu, “A 6 bit 2 GS/s Flash-Assisted Time-Interleaved (FATI) SAR ADC with Background OffsetCalibration,” IEEE Asian Solid-State Circuits Conference, pp. 281–284, Nov. 2013.

[38] S. Lee, A. P. Chandrakasan, H.-S. Lee, “A 1GS/s 10b 18.9mW Time-Interleaved SAR ADC with BackgroundTiming-Skew Calibration,” IEEE International Solid-State Circuits Conference, pp. 384–385, Feb. 2014.

[39] B.-R.-S. Sung, D.-S. Jo, I.-H. Jang, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A21fJ/conv-step 9 ENOB 1.6GS/s 2x Time-Interleaved FATI SAR ADC with Background Offset andTiming-Skew Calibration in 45nm CMOS,” IEEE International Solid-State Circuits Conference, pp.464–465, Feb. 2015.

[40] K. Poulton, J. J. Corcoran, and T. Hornak, “A 1-GHz 6-bit ADC System,” IEEE J. of Solid-State Circuits,vol. SC-22, No. 6, pp. 962–970, Dec. 1987.

[41] K. C. Dyer, D. Fu, P. J. Hurst, and S. H. Lewis, “An Analog Background Calibration Technique forTime-Interleaved Analog-to-Digital Converters,” IEEE J. of Solid-State Circuits, vol. 33, No. 12, pp.1912–1919, Dec. 1998.

[42] K. Poulton, R. Neff, A. Muto, W. Liu, A. Burstein, and M. Heshami, “A 4 GSample/s 8b ADC in 0.35µmCMOS,” IEEE International Solid-State Circuits Conference, pp. 166–167, Feb. 2002.

[43] K. Doris, E. Janssen, C. Nani, A. Zanikopoulos, G. van der Weide, “A 480 mW 2.6 GS/s 10bTime-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS,” IEEE J. of Solid-State Circuits,vol. 46, No. 12, pp. 2821–2833, Dec. 2011.

42

[44] N. Le Dortz, J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual, D. Goguet, C.Lelandais-Perrault, P. Benabes, “A 1.62GS/s Time-Interleaved SAR ADC with Digital BackgroundMismatch Calibration Achieving Interleaving Spurs Below 70 dBFS,” IEEE International Solid-StateCircuits Conference, pp. 386–387, Feb. 2014.

[45] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendil, M. Kossel, T. Morf, T. M. Andersen, Y.Leblebici, “A 90GS/s 8b 667mW 64x Interleaved SAR ADC in 32nm Digital SOI CMOS,” IEEE InternationalSolid-State Circuits Conference, pp. 378–379, Feb. 2014.

[46] A. Panigada and I. Galton, “A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by DigitalHarmonic Distortion Correction,” IEEE J. of Solid-State Circuits, vol. 44, No. 12, pp. 3314–3328, Dec. 2009.

[47] N. Rakuljic and I. Galton, “Suppression of Quantization-Induced Convergence Error in Pipelined ADCsWith Harmonic Distortion Correction,” IEEE T. on Circuits and Systems I, vol. 60, No. 3, pp. 593–602, Mar.2013.

[48] B. C. Levy, “A Study of Subtractive Digital Dither in Single-Stage and Multi-Stage Quantizers,” IEEE T. onCircuits and Systems I, vol. 60, No. 11, pp. 2888–2901, Nov. 2013.

[49] A. M. A. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brunsilius, P. R.Derounian, B. Jeffries, U. Mehta, M. McShea, and R. Stop, “A 14 Bit 1 GS/s RF Sampling Pipelined ADCWith Background Calibration,” IEEE J. of Solid-State Circuits, vol. 49, No. 12, pp. 2857–2867, Dec. 2014.

43