Calculus:Nth Differential Coefficient of Standard Functions

  • Upload
    ap021

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    1/14

     

    SUCCESSIVE DIFFERENTIATION:

    LEIBNITZ'S THEOREM 

    OBJECTIVES

    At the end of this session, you will be able to understand:

    Definition

    nth

      Differential Coefficient of Standard Functions

    Leibnitz’s Theorem

    DIFFERENTIATION: If be a differentiable function of x, then)( x f   y = )('   x f  dx

    dy= is called the first

    differential coefficient of y w.r.t x.

    Hence, differentiating both side w.r.t. x, we have

    ( ) ( )

    ( )

    ( )

    2 2

    2 2

    2 3 3

    2 3 3

      ' '' .

    d dy d d  be represented by ; then ''

    dx dx

    d dSimilarly is represented by ; ie ''' and so on

    dx dx

    T

    d dy d   f x f x

    dx dx dx

     y y Let f x

    dx dx

     y d y d y f x

    dx dx

    = =

    =

    =

      2 3

    2 3

    n

    1 2 3

    he expressions , , , ....... are called the first, second, third, .....nth differen-

    tial coefficient of y.

    These function are usually written as

    y',y'',y''',......y or y ,y y ......

    n

    n

    dy d y d y d y

    dx   dx d x dx

    2 3

    n..................y and also , , ,....... .n

     Dy D y D y D y

     

    nth

     DIFFERENTIAL COEFFICIENT OF STANDARD FUNCTION:

    (i) Differential Coefficient of :m

     x  

    m 1

    1

    2 3

    2 3

    n

     y = x , then y ;

    y ( 1) ; y ( 1)( 2) and so on

    In general, y ( 1)( 2)( 3).........................( 1) ;

    m

    m m

    m n

     If mx

    m m x m m m x

    m m m m m n x

    − −

    =

    = − = − −

    = − − − − +

     

    1

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    2/14

     

     Note: If m be a positive integer, we have

    ny 1.2.3............ !;m m= =  

    Hence ( ) ( 1)( 2)( 3)............( 1)m mn D x m m m m m n x  n−= − − − − +  

    (ii) Differential Coefficient of ( )max b+ :

     m 1

    1

    2 2 3 3

    2 3

    If y = (ax+b) , then ( ) ;

    ( 1)( ) ; ( 1)( 2)( ) and so on.

    In general ( 1)( 2)( 3)............( 1)( )

    m

    m m

    n m n

    n

     y am ax b

     y a m m ax b x y a m m m ax b x

     y a m m m m m n ax b x

    − −

    = +

    = − + = − − +

    = − − − − + +

     

    [Note: In the first differentiation, the last term in it is ( )11+−m

    )2

    ; in the second differentiation it is

    i.e. ( ;in the third differentiation it is ()1(   −m )12 +−m   −m i.e. )13(   +−m .So the nth differentiation it

    will be .])1+− n(m

     

    Hence ( ) ( 1)( 2)( 3)............( 1)( )

    !or ( ) ( )

    ( )!

    In case m is negative integer,let , where is positive integer, then

      ( ) ( )( 1)( 2)....

    m n m n

    m n m n

     p n

     D ax b a m m m m m n ax b

    m D ax b a ax b

    m n

    m p p

     D ax b a p p p

    + = − − − − + +

    + = +−

    + = − − − − −

    1

    ................[ ( 1)]( )

    ( 1) ( 1)( 2)....................[( 1)]( )

    ( 1)!( 1) ( )( 1)!

     Note1. If .then ( ) !

     Note2. If 1, we have ( ) (

     p n

    n p nn

    n n p n

    n p n

    n

     p n ax b

     p p p p n ax ba

     p n a ax b p

    m n D ax b a

    m D ax b

    − −

    − −

    − −

    − − − +

    = − + + − + +

    − += − +−

    = + =

    = − + = 1

    1 1

    1

    1)( 1 1)................( 1 1) ( )

    ( 1) !( 1) 1.2.3........... ( ) ! ( ) .( 1)

    ( )

    n n

    n nn n n n nn

    n

    n a ax b

    n ana ax b n a ax b

    ax b

    − −

    − − − −

    +

    − − − − − + +

    −− + = + =−

    +

     

    (iii) Differential Coefficient of ( )ax b+ : 

    1

    1

    2 2 3 3

    2 32 2 3 3

    4 43

    4 4 4

    (0!)If log( ), ( )( ) ( )

    .1 .(1!) .2 .(2!)  . .

    ( ) ( ) ( ) ( )

    2.3 .(3!)  and so on.( 1) .

    ( ) ( )

    a a y ax b then y a ax bax b ax b

    a a a a y y

    ax b ax b ax b ax b

    a   a y

    ax b   ax b

    = + = = + =+ +

    = = − = = −+ + + +

    = =   −+   +

     

    2

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    3/14

     

    1

    1

    1

    .( 1)!In general, ( 1) .

    ( )

    .( 1)!

    Hence log( ) ( 1) . .( )

    ( 1) ( 1)! Note: log .

    nn

    n   n

    nn n

    n

    nn

    n

    a n y

    ax b

    a n

     D ax b ax b

    n D x

     x

    −= −

    +

    + = − +

    − −=

     

    (iv) Differential Coefficient of :bxa

     2 2

    1 2

    3 3

    3

    n

    If , then log , (log ) .

    , and so no.(log )

    In general, ,(log )

    Hence D . (log ) .

    bx bx bx

    bx

    n nbxn

    bx n nbxe

     y a y ba a y b a a

     y b a a

     y   b aa

    a b aa

    = = =

    =

    ==

     

    (v) Differential Coefficient of :axe

     

    2 3 4

    1 2 3 4

    If , then

    , , , and so on.

    In general, , Hence .

    ax

    ax ax ax ax

    n ax n ax n ax

    n

     y e

     y ae y a e y a e y a e

     y a e D e a e

    =

    = = = =

    = =

     

    (vi) Differential Coefficient of sin( ) :ax b+  

    1

    2 22

    1

    If sin( ), then

      cos( ) sin ( )2

    2  cos( ) sin ( ) ,and so on.

    2

    1

    In General, .sin 2

    1Hence, ( ) sin

    2

     Note: sin

    n

    n n

    n

     y ax b

     y a ax b a ax b

     y a ax b ax ba

     y ax b na

     D ax b a ax b n

     D x

    π 

    π 

    π 

    π 

    = +

    = + = + +

    = − + = + +

    = + +

    + = + +

    sin2

    n x

      π  = + 

     

    3

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    4/14

     

    (vii) Differential Coefficient of cos( ) :ax b+  

    1

    2 22

    If cos( ), then

    sin( ) cos2

    2sin cos ,and so on

    2 2

    1In general, cos .

    2

    1Hence, cos ( ) cos .

    2

     Note : cos co

    n

    n

    n n

    n

     y ax b

     y a ax b   a ax b

     y a ax b ax ba

     y a ax b n

     D x ax b a ax b n

     D x

    π 

    π π 

    π 

    π 

    = +

    = − + =   + +

    = − + + = + +

    = + +

    + = + +

    =1

    s .2

     x nπ 

    +

     

    (viii) Differential Coefficient of sin( ) and cos( ) :ax axe bx c e bx c+ +

     

    1

    2 2 2 1

    1

    If sin( ), then

      sin( ) cos( ) [ sin( ) cos( )]

    Putting cos and sin , we get

      sin( ), where and tan ,

    similary

    ax

    ax ax ax

    ax

     y e bx c

     y e bx c be bx c e a bx c b bx c

    a r b r  

    b y re bx c r a ba

    φ φ 

    φ φ    −

    = +

    = + + + = + +

    = =

    = + + = + =  

    +

    21

    1

    2 2 12

    1

    2 2 12

    , ,and so on.sin( 2 )

    Hence, sin( ) sin( )

    where ( ) and tan .

    Similarly, cos( ) cos( )

    where ( ) and tan .

    ax

    n ax n   ax

    n ax n   ax

     y   r bx ce

     D e bx c r bx c ne

    br a b

    a

     D e bx c r bx c ne

    br a ba

    φ 

    φ 

    φ 

    φ 

    φ 

    =   + +

    + = + +

    = + =  

    + = + +

    = + =  

     

    Example. Find the derivative ofthn .cossin   cxbxe ax

     

    Solution.

    4

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    5/14

    { }

    2 2 / 2 1

    / 22 2

    1 Let sin cos (2sin cos )

    2

    1 1  [sin( ) sin )] [ sin sin( ) ].( ( )

    2 2

     Now sin( ) ( ) sin tan

    ( ) si1

    2

    ax   ax

    ax ax ax

    n n axax

    nax

    n

     y e bx cx   e bx cx

    e bx cx x e x e b cbx c b c

    b D bx cx b c e bx c nea

    a b c e

     y

    = =

    = + + = + −− +

    + = + + +  

    + +

     x

    ∴ ={ }

    { }

    1

    / 22 2 1

    n tan ( ) /( )

    ( )( ) sin tan( )

    nax

     x n b c ab c

    b ca b c e x nb c

    a

    + ++ −

    + − − +

     

    Example. If .0)(2that proved ,sin22

    12   =++−=   ybaay ybxe y  ax

     

    Solution.

    1

    2 2

    2

    2

    1

    2 2

    Let sin , sin cos

    and sin 2 sin ...............(1)

    Also 2 2 sin 2 cos ...............(2)

    and ( )

    ax ax ax

    ax ax ax

    ax ax

     y e bx y ae bx be bx

     y a e bx abe b e bx

    ay a e bx abe bx

    a b y a

    = ∴ = +

    = + −

    − = − −

    + = 2 2

    2 2

    2 1

    sin sin .................(3)

    Adding (1),(2)and (3), we get

      y - 2ay ( ) 0

    ax axe bx b e bx

    a b y

    +

    + + =

     

    LEIBNITZ'S THEOREM: 

    The find nth

    differential coefficient of two function of x

    If u and v are any two functions of x such that all their desired differential coefficients exist, then the nth

    differential coefficient of their product is given by

    1 1 2

    1 2

    1 2 2

    ( ) ( ). . . ....... . ...... .

      or 

    ( 1)( ) ( ). . .............

    2!

    n n n n n n n n r r  

    n n n n

    n D uv D u v c D u Dv c D u D v c D n D v uD v

    n n D uv D u v nD u Dv D uD v n

    − − −

    − −

    = + + + + + +

    −= + + + + 1 .n DuD v uDv− +

     

    Proof.

    5

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    6/14

    Let , we have

      ( ) ( ) ( ). . ........ ......(1)

    From (1) we see that the theorem is true for n 1.

     Now assume that the theorem is true for a particular val

    n

     y uv

     Dy uv D u Du v u Dv

    =

    = = +

    =

    1 2 2

    1 2

    1 1

    1

    ue of n,we have

    ( ) ( ). . . ....... .

      ...... ............(2)

    Differentiating both siede of (2

    n n n n n n r r  

    c c r 

    n r r n

     D uv D u v n D u Dv n D u D v c D u D v

    n D uD v uD v

    − − −

    − − ++

    = + + + +

    + + +

    ( )

    ( ) (

    ( )

    1 1 1 2

    1 1

    1 2 2 3 1 1

    2 2

    1 1 2

    1 1

    ) w,r,t,x, we get

      ( ) ( ). . .

      . . ..... . .

      . . ..... .

    n n n n n

    c c

    n n n r r n r  

    c c cr cr  

    n r r n r r n

    cr cr  

     D uv D u v D uDv n D u Dv n D u D v

    n D u D v n D u D v n D u D v n D u D v

    n D u D v n D u D v DuD v u

    + + −

    − − − + −

    − + − − +

    + +

    = + + +

    + + + + +

    + + + + +

    ( )

    1

    1 1 1 2

    1 1 2

    1 1

    1

    1

    .

    Rearranging the term, we get

      ( ) ( ). (1 ) ( ) ( ) .

      ..... ( )( . ) ...... ...(3)

    But we know that

    n n n n

    c c c

    n r r n

    cr r 

    n n

     D v

     D uv D u v n D uDv n n D u D v

    n n D u D v uD v

    c c

    +

    + + −

    − + ++

    = + + + + + +

    + + + +

    + 11 1

    1 1

    1 0 1 1 1 2 2,

    1 1 1 1 1 2

    1 2

    1 1

    1

    . Therefore

    1 , and so on.

    Hence(3) gives

    ( ) ( ). ( ). ( ).( ) .........

      ..... . .....

    n

    r r 

    n n n n n n n

    n n n n n n

    n n r r  

    c

    c c c c c c c

     D uv D u v c D u Dv c D u D v

    c D u D v

    ++ +

    + +

    + + + + −

    + − ++

    =

    + = + = + =

    = + + +

    + + + 1. . ..............(4)nu D v+

    )r +

     

    From (4) we see that if the theorem is true for any value of n, it is also true for the next value of n. But

    we have already seen that the theorem is true for n =1.Hence is must be true for n =2 and so for n =3,

    and so on. Thus the Leibnitz's theorem is true for all positive integral values of n.

    Example. Find the nth differential coefficients of

    (i) sin cos ,

    (ii) log[( )( )].

    ax bx

    ax b cx d  + +Solution.

    6

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    7/14

    1 1 (i) Let sin cos [2sin cos ] [2sin( ) sin( ) ].

    2 2

    1we know that sin( ) sin .

    2

    1 1( ) sin ( ) ( ) sin ( ) .

    2 2

    n n

    n n n

     y ax bx ax bx a b x a b

     D ax b a ax b n

     y a b a b x n a b a b x n

    π 

    π π 

    = = = + + −

    + = + +

    1

    2

     x

    ∴ = + + + + − − +

     

    [ ]n 1

    1 1

    1

    (ii) Let log ( )( ) log( ) log( ).

    We know that log( ) ( 1) ( 1)! ( )

    ( 1) ( 1)! ( ) ( 1) ( 1)! ( )

      ( 1) ( 1)! .

    ( ) ( )

    n n n

    n n n n n

    n

    n nn

    n n

     y ax b cx d ax b cx d 

     D ax b n a ax b

     y n a ax b n c cx

    a cn

    ax b cx d  

    − −

    − − −

    = + + = + + +

    + = − − +nd   −∴ = − − + + − − +

    = − − +

    + +

     

    Example. Find the nth derivatives of  2

    1.

    1 5 6 x x− + 

    Solution.

    2

    2

    1 1

    1

    1 1Let .

    (2 1)(3 1)6 5 1

    1 (3 1) (2,

    2 1 3 1 (2 1)(3 1)6 5 11 1

    Putting ,1 , i.e. 3 ; putting , 2.2 3 2

    2 3Hence 2(2 1) 3(3 1)

    2 1 3 1

    Therefor 2(2 1)n

    n   n

     y x x x x

     A B A x B x

     x x x x x x B

     x B x A

     y x x x x

    d  y x

    dx

    − −

    = =− −− +

    − + −1)∴ ≡ + ≡

    − − − −− +

    = = − = − = =

    = + = − − −− −

    = − 1

    1 1

    1 1

    1 1

    1 1

    3(3 1)

     Now we apply the formula,

    ( ) ( 1) ( !)( ) .

    Hence 2.2 ( 1) ( !)(2 1) 3.3 ( 1) ( !)(3 1) .

    2 3or ( 1) ( !) .

    (2 1) (3 1)

    n

     x

    n

    n n n n

    n n n n n n

    n nn

    n   n n

    d  x

    dx

     D ax b n ax b a

     y n x n x

     y n x x

    − − −

    − − − −

    + +

    + +

    − −

    + = − +

    = − − − − −

    = − +

    − −

     

    7

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    8/14

    Example.1 /2

    If sin cos , prove that 1 ( 1) sin 2 .n n n y ax ax y a ax = + = + −  

    1 /22

    1/ 2

    Let sin cos , then

    1 1

      sin cos2 2

    1 1  sin cos

    2 2

    1 1  1 2sin cos

    2 2

      [1 sin(2

    n n

    n

    n

    n

    n

     y ax ax

     y a ax n a ax n

    a ax n ax n

    a ax n ax n

    a a

    π π 

    π π 

    π π 

    = +

    ∴ = + + +

    = + + +

    = + + +

    = + 1 /2 1/ 2

    1/ 2

    )] [1 sin cos 2 cos sin 2 ]

    [1 ( 1) sin 2 ] [ sin 0 and cos ( 1) ]n n nn

    n n ax n

     y a ax n n

    π π π 

    π π 

    + = + +

    = + − = = −Q

    ax

     

    Example.

    2 22 2 2 2 2

    2 3If cos sin , prove that .

    d p a b p a b p

    d pθ θ 

    θ 

    = + + =

    2

     

    Solution.

    2 2 2 2 2

    2 2

    Given cos sin ...(1)

    Differentiating both sides of (1) w.r.t , we get

      2 2( )cos sin ...(2)

    Aga

     p a b

    dp p b a

    θ θ 

    θ 

    θ θ 

    θ 

    = +

    ∴ = −

    222 2 2 2

    2

    2

    in differentiating both sides of (2) w.r.t , we get

      ( )(cos sin ) ...(3)

    Multiplying (3) by and substituting the value of form (1) a

    d p dp p b a

    d d 

    dp p

    θ 

    θ θ θ θ 

    θ 

      + = − −  

    23 2 2 2 2 2 2 2 2 2 2

    2

    23 2 2 2 2 2 2 2 2 2 2 2 2 2

    2

    nd (3), we get

      ( ) cos sin ( )(cos sin )

    or ( cos sin )( )(cos sin ) ( ) cos sin

    d p p b a p b a

    d p p a b b a b ad 

    θ θ θ θ  θ 

    θ θ θ θ θ θ θ  θ 

    + − = − −

    = + − − − −

     

    8

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    9/14

    24 3 2 2 2 2 2 2 2 2 2 2 2 2

    2

    2 2 2 2 2

      or ( )[(cos sin )( cos sin ) ( )cos sin ]

      ( cos sin )

     

    d p p p b a a b b a

    a b

    θ θ θ θ θ  θ 

    θ θ 

    + = − − + − −

    + −

    θ 

    2 2 2 4 2 4 2 2 2 2 2

    2 2 2 2 2 2

    2 2 2

    2 3

     =( )[( cos sin ) ( cos sin )

      = (cos sin )

    Hence .

    b a a b a b

    b a a b

    d p a b p

    d p

    θ θ θ θ  

    θ θ 

    θ 

    − − + +

    + =

    + =

     

    Example.1

    Find if log .n

    n y y x  −=   x

     

    Solution.

    1 1 1 1 2 1

    3 1 3 1

     By Leibnitz's theoram, we get

    ( 1)( log ) ( ) log ( ) log ( ) log2!

    ( 1)( 2)  ( ) log ....... .

    3!

    ! Now ;

    ( )!

    n n n n n n n nn

    n n n n

    n m m n n n

    n n y D x x D x x nD x D x D x D

    n n n D x D x x D Logx

    m D x x D x

    m n

    − − − − − −

    − − −

    −= = + +

    − −+ + +

    =−

    2  x

    1

    1 1 1 1

    2 1 3 1 2

    1

    2

    0

    !  ; ( 1)!

    ( 1)!

    ( 1)! ( 1)!  ;

    1! 2!

    ( 1)!and log ( 1)

    Hence

    1 ( 1) ( 1)! ! ( 1)( 2) ( 1)!( 1)!

    2! 1! 3! 2!

    n m m n n n

    n n n n

    n n

    n

    n

    m D x x D x n

    m n

    n n D x x D x x

    n D x

     x

    n n n n n n nn n x

     x   x y

    − − + − −

    − − − −

    =

    = ∴ = −− +

    − −= =

    −= −

    − − − − − − + − +

    =

    2

    3

    11

    1

    1 2 3

    2....

    ( 1) ( 1)!  .......

    ( 1)!  = [1 {1 ...... ( 1) }]

    ( 1)!  =

    nn

    n

    n n n n

    n

     x x

    n x

     x

    nc c c c

     x

    n

    −−

    +

    +

    − −

    +

    −− − − − + + −

    − ( 1)![1 (1 1)n

      n −− − =

     

    9

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    10/14

    1 2

    1

    1 1 1

    1

    2 1 1 1

    1

    1 1

    Aliter. log ( 1) log .

      ( 1) log ( 1) .

    Differentiating both sides ( 1)times, we have

      ( ) ( 1) .

    ( 1) ( 1) (

    n n

    n n n

    n n n n

    n n n

     y x x y n x x x

     xy n x x x n y x

    n

     D xy n D y D x

     xy n y n y

    − −

    − − −

    − − − −

    − +

    = ∴ = − +

    ∴ = − + = − +

    = − +

    2n−

    ∴ + − = − +( 1)

    1)! or nn

    n y!

     x

    −− =

     

    Example.2

    2 1  y cos(log ) sin(log ), show that 0 If a x b x x y xy y= + + +2 2

    2 1and (2 1) ( 1) 0.n n n x y n xy n y+ ++ − + + =

    =

     

    Solution.

    1 1

    2 1

    2

    2 1

    Let cos(log ) sin(log ),1 1

    sin(log ). cos(log ) or sin(log ) cos(log )

     Now again differentiating both sides, we get

    1 1  cos(log ). sin(log )

    or [ cos(log )

     y a x b x

     y a x b x xy a x b x x x

     xy y a x b x x x

     x y xy a x b

    = +

    = − + = − +

    + = − −

    + = − +2

    2 1

    2

    2 1

    2

    2 1

    2 2 1 2 2 2 1

    2 2 2 1 1

    sin(log )]

    or

    or 0.

    Again differentiating both sides in times by Leibnitz's theorem,

      ( ) ( ) ( ) 0.

    ( 1)or + 0

    2

    or

    n n n

    n n n n n

    n

     x

     x y xy y

     x y xy y

     D x y D xy D y

    n n x D y nDx D y D x D y xD y nD y y− − +

    + = −

    + + =

    + + =

    −+ + +

    2

    2 1 1

    2 2

    2 1

    2 ( 1) 0

    or (2 1) ( 1) 0.

    n n n n n n

    n n n

     x y nxy n n y xy ny y

     x y n xy n y

    + + +

    + +

    + + − + + + =

    + − + + =

    + =

     x 2

     

    Example  If prove that1sin( sin ). y m   −= 2 2 1(1 ) 0 x y xy m y− − + =2

      and deduce that

    2 2

    2 12 1) (n nn xy n+ ++ −(1 ) ( ) 0. x y m y− − −   n  =

     x

     

    Solution: Let 1sin( sin ). y m   −=

      10

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    11/14

    1 2 2 2

    1 12

    2 2 2 2 2 1 2 2 2

    1

    2 2 2 2

    1

    2 2 2

    1 2 1 1 2

    cos( sin ). . or (1 ) cos ( sin ).(1 )

     (1 ) sin ( sin )

      (1 ) .Again differentiating both sides, we have

      2 (1 ) 2 2 0. or

    m y m x x y m m

     x

    or x y m m m x m m y

     x y m y m

     y y x xy m yy y

    − −

    = − =−

    − = − = −

    ∴ − + =

    − − + =

    2 1  x

    2 2

    1

    2 2

    2 1 1

    2 2 2

    2 1

    (1 ) 0.

     Now differntiating n time by Leibnitz's theorem, we get

    ( 1)(1 ) ( 2 ) ( 2) 0,

    2!

    or (1 ) (2 1) ( ) 0.

    n n n n n n

    n n n

     x xy m y

    n n y x ny x y xy ny m y

     x y n xy n m y

    + + +

    + +

    − + =

    −− + − + − − − + =

    − − + − − =

     

    To find The nth Derivative When x = 0

    Example: Find ( 10) . if sin( sin ).n y y a  −=   x

     x

     

    Solution:

    Let ……..(1)1sin( sin ). y a   −=

    1

    12

    2 2 2 2 1 2 2 2 1 2 2

    1

    2 2 2 2 21

    cos( sin ). ,(1 )

    or (1 ) cos ( sin ) sin ( sin )

    or (1 ) 0. ................(2)

    Differentiating (2), w

    a y a x

     x

     y x a a x a a a x a a y

     y x a y a

    − − 2

    ∴ =−

    − = = − = −

    − + − =

    2 2 2

    1 2 1 1

    2 2

    2 1 1

    2

    2 1 1

    e have

    2 (1 ) ( 2 ) 2 0.

      (1 ) 0 ...................(3)

     Differentiating (3) n times, we have

    ( 1)(1 ) 2 .2

    2!n n n n

     y y x y x a yy

    or y x xy a y

    n n y x ny x y xy n+ + +

    − − − + =

    − + + =

    −− − − − − 2

    2 2 2

    2 1

    0.

    or (1 ) (2 1) ( ) 0. ..................(4)

    n n

    n n n

     y a y

     y x n xy n a y+ +

    + =

    − − + − − =

     

    Putting x = 0 in (1), we get (y)0 = 0.

    Putting x = 0 in (2), we get (y1)0 = 0

    Putting x = 0 in (3), we get (y2)0 = 0 and

    11

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    12/14

    Putting x = 0 in (4), we get2 2

    2 0 0( ) ( )(n n y n a+   = − ) y

    .

    .

    .

    a

    .

    0n

     

     Now putting n = 2 in (5),2 2

    6 0 2 0( ) (2 )( ) 0 y a y= − =

     

    Putting n = 4 in (5), 2 26 0 4 0( ) (4 )( ) 0 y a y= − = 

    Similarly 8 0( ) 0 y   = Thus the derivatives for which n is even are zero

    Again, putting2 2 2 2

    3 0 1 01,( ) (1 ).( ) (1 ) .n y a y a= = − −

     

     Now when n is odd.2 2

    2 0 0( ) ( )( )n n y n a y+   = −

     

    Putting n is place of (n-2) we obtain

    [ ]

    2 2

    0 2 0

    2 2 2 2 2 2 2 2

    3 0

    2 2 2 2 2 2 2 2

    ( ) ( 2) ( )

    ( 2) ( 4) ( 6) ......... 3

    ( 2) ( 4) ......... 3 1 . .

    n n y n a y

    n a n a n a a y

    n a n a a a a

    − = − −

    = − − − − − − −

    = − − − − − −

     

    Example.1 2

    2 1

    2

    2 1

    If tan , prove that (1 ) 2 0 and deduce that

     (1 ) 2( 1) ( 1) 0 Hence determine ( )n n n

     y x x y xy

     x y n xy n n y y

    + +

    = + + =

    + + + + + =  

    Solution.1

    1 2

    2

    1

    Let tan .........(1)

    1  , ...(2)

    (1 )

    or (1 ) 1 0. ...(3)

    Differentiating (3), we

     y x

     y x

     x y

    −=

    ∴ =+

    + − =2

    2 1

    2

    2 1 1

    2

    2 1

    get (1 ) 2 0 .........(4)

     Now , differentiating (4) n times by Leibnitz's theorem, we get

    ( 1)  (1 ) (2 ) .2 2 2 0

    2!

    or (1 ) 2( 1) ( 1)

    n n n n n

    n n

     x y xy

    n n y x ny x y xy ny

     x y n xy n n y

    + + +

    + +

    + + =

    −+ + + + + =

    + + + + + 0 .........(5)n   =

     

    12

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    13/14

    [ ]

    0 1 0 2 0

    2 0 0

    Putting x = 0, in (1),(2) and (4), we get

      ( ) 0, ( ) 1, ( ) 0.

    Also putting x = 0 in (5) we get

      ( ) ( 1) ( ) . .............(6)

    Putting n-2 in

    n n

     y y y

     y n n y+

    = = =

    = − +

    0 2 0

    4 0

    n-2 0 4 0

     place of n in the foumula (6),we get

      ( ) [( 1)( 2)]( )

      [ {( 1)( 2)}][ {( 3)( 4)}]( )

    Since from (6), we have (y ) {( 3)( 4)}]( )

    Case I. When n is even, we h

    n n

    n

    n

     y n n y

    n n n n y

    n n y

    = − −

    = − − − − − −

    = − − −

    0 2 0

    2 0

    0

    ave

      ( ) [ {[( 1)( 2)}][ {( 3)( 4)}]....[ (3)(2)]( )

      = 0, Since ( ) 0.

    Case II. When n is odd, we have  ( ) [ {[( 1)( 2)][ {( 3)( 4)}]....[ (4)(3)]

    n

    n

     y n n n n y

     y

     y n n n n

    = − − − − − − −

    =

    = − − − − − − − 1 0( 1)2

    1 0

    [ (2)(1)( )

      ( 1) ( 1)!, since (y ) 1.n

     y

    n−

    = − − =  

    13

  • 8/17/2019 Calculus:Nth Differential Coefficient of Standard Functions

    14/14

    ADDITIONAL PROBLEMS:

    1. Find the nth differential coefficient of

    ( ) ( )

    3

    2

    2

    ( ) sin

    ( ) sin cos3

    ( ) cos sin

    x( )

    2 2 3

    ax

    i x

    ii x x

    iii e x x

    iv x x+ +

     

    2. If ( )2 22 1sin , prove that 2 0ax bx y ay a b y= − + y e  + = 

    3. If ( ) ( )1 2 2 1cos sin , prove that 1 0 x x y xy m y−= − − 2+ = y m  and

    ( )2 2

    2 11 (2 1) ( )n n x y n xy m n y+ +− − + + −

    2

    0n  =  

    4. If ( ) ( )2

    1 2

    2 1sin , prove that 1 2 0 y x x y xy−= − − − =  and deduce that

    ( )2 22 11 (2 1)n n x y n xy n y+ +− − + − 0n  =  

    5. If (1tan

    , prove that x

     y e−

    =   )2 2 11 {2( 1) 1} ( 1)n n x y n x y n n y+ ++ + + − + + 0n  =  

    14