26
Compressive and tensile failure in vertical Compressive and tensile failure in vertical wells wells

C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Compressive and tensile failure in verticalCompressive and tensile failure in verticalwellswells

Page 2: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Stress around circular cavityStress around circular cavity

© Cambridge University Press (Fig. 6.1, pp. 169)Zoback, Reservoir Geomechanics

Page 3: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Kirsch solutionKirsch solution

σrr

σθθ

σrθ

σzz

= (1 − ) + (1 − 4 + 3 ) cos 2θ+σHmax σhmin

2

a2

r2

−σHmax σhmin

2

a2

r2

a4

r4

+ ( − )( )Pw Pp

a2

r2

= (1 + ) − (1 + 3 ) cos 2θ − ( − )( )+σHmax σhmin

2

a2

r2

−σHmax σhmin

2

a4

r4Pw Pp

a2

r2

= (1 + 2 − 3 ) − sin 2θ−σHmax σhmin

2

a2

r2

a4

r4

= − 2ν( − )( ) cos 2θσv σHmax σhmina2

r2

Page 4: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

ExampleExample

© Cambridge University Press (Fig. 6.2a, pp. 171)

SHmax

Sv

Shmin

Pp

Pw

= 90MPa

= 88.2MPa

= 51.5MPa

= 31.5MPa

= 31.5MPa

Zoback, Reservoir Geomechanics

Page 5: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Along azimuth of Along azimuth of

© Cambridge University Press (Fig. 6.2b,c, pp. 171)

SHmax Shmin

Zoback, Reservoir Geomechanics

Page 6: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Variation of wellbore stressesVariation of wellbore stresses

© Cambridge University Press (Fig. 6.3a, pp. 173)Zoback, Reservoir Geomechanics

Page 7: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Wellbore breakout regionWellbore breakout region

© Cambridge University Press (Fig. 6.3b,c, pp. 173)Zoback, Reservoir Geomechanics

Page 8: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Mudweight stabilizationMudweight stabilizationAs increases, decreases and increases.

© Cambridge University Press (Fig. 6.3b, pp. 173 and Fig. 6.5a,pp. 177)

ΔP σθθ σrr

Zoback, Reservoir Geomechanics

Page 9: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Breakouts as indicators of far-�eld stressesBreakouts as indicators of far-�eld stressesSimplify Kirsch equations at wellbore wall , soa = r

σrr

σθθ

σzz

= ( − ) = ΔPPw Pp

= + − 2( − ) cos 2θ − ΔPσHmax σhmin σHmax σhmin

= − 2ν( − ) cos 2θσv σHmax σhmin

has min at 0 and 180σθθ∘ ∘

σminθθ

= 3 − − ΔPσHmin σHmax

has min at 90 and 270 , soσθθ∘ ∘

σmaxθθ

= 3 − − ΔPσHmax σhmin

so

−σmaxθθ

σminθθ

= 4( − )σHmax σhmin

Page 10: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Tensile induced fracturesTensile induced fractures

© Cambridge University Press (Fig. 6.5a, pp. 177)Zoback, Reservoir Geomechanics

Page 11: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Safe drilling mud windowSafe drilling mud window

Mud weight too low

Breakouts

Mud weight too high

Tensile induced fractures leading to lost circulation

Page 12: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Imaging breakoutsImaging breakouts

Ultrasonic -wave Electrical resistivity Breakout cross-section

© Cambridge University Press (Fig. 6.4a,b,c, pp. 176)

P

Zoback, Reservoir Geomechanics

Page 13: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Four-arm caliper dataFour-arm caliper data

Caliper data Breakout indication Examples ofvariations

Page 14: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Thermal e�ects on wellbore stressThermal e�ects on wellbore stress

Strongly time dependent

strongly depenendent of the silica content of the rock.

Under steady-state conditions,

= T∂T

∂tαT∇

2

α →

Δ =σTθθ

EΔTαT

1 − ν

Page 15: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Time-temperature e�ectsTime-temperature e�ects

© Cambridge University Press (Fig. 6.14a,b pp. 194)

ΔT =

ΔP =

 C25∘

6 MPa

Zoback, Reservoir Geomechanics

Page 16: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Stability through cooling?Stability through cooling?

Cooling Reference

© Cambridge University Press (Fig. 6.14c pp. 194 and Fig. 6.3pp. 173)

Zoback, Reservoir Geomechanics

Page 17: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Rock strength anisotropyRock strength anisotropy

© Cambridge University Press (Fig. 4.12, pp. 106)

=σ1 σ32( + )Sw μwσ3

(1 − cot ) sin 2βμw βw

Zoback, Reservoir Geomechanics

Page 18: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Rock strength anisotropy e�ects onRock strength anisotropy e�ects onbreakoutsbreakouts

© Cambridge University Press (Fig. 6.16a,b pp. 199)Zoback, Reservoir Geomechanics

Page 19: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Two mechanismsTwo mechanisms

Stresses exceed intact rock strength

Stresses activate slip on weak bedding planes

© Cambridge University Press (Fig. 6.16c pp. 199)Zoback, Reservoir Geomechanics

Page 20: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Chemical e�ectsChemical e�ectsWater Activity ( ) can to increased pore pressure∼Aw

1

salinity

Page 21: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

from breakout data from breakout dataSHmax

=SHmax

( + 2 + ΔP + Δ ) − (1 + 2 cos(π − )C0 Pp σTShmin wbo

1 − 2 cos(π − )wbo

Page 22: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

ExampleExample

© Cambridge University Press (Fig. 7.7 pp. 223)Zoback, Reservoir Geomechanics

Page 23: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Wellbore stabilityWellbore stability

Page 24: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

De�ning a "stable" wellboreDe�ning a "stable" wellbore

© Cambridge University Press (Fig. 10.1a,b pp. 304)Zoback, Reservoir Geomechanics

Page 25: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Emperical model: Emperical model: Maximum 90Maximum 90 breakouts breakouts

© Cambridge University Press (Fig. 10.2a,b pp. 305)

Zoback, Reservoir Geomechanics

Page 26: C o m p r e s s iv e an d t e n s ile f a ilu r e in v e r ... · B r e ak o u t s as in d ic at o r s o f f a r - e ld s t r e s s e s Simplify Kirsch equations at wellbore wall

Comprehensive modelComprehensive model

i.e. why your studying geomechanicsi.e. why your studying geomechanics