53
Europ¨ aisches Forum Alpbach 18 August, 2003 Chaos in the real world

C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Europaisches Forum Alpbach 18 August, 2003

Chaos in the real world

Page 2: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaos everyday

• Water dripping from a faucet.

• Convection rolls in a heated kettle.

• The global weather ?

• Populations of some species.

• The heart.

• The brain ?

• Meteorites.

• Economic systems?

Page 3: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Time Series

I have a stream of data from a system. Can if find out if the system

is chaotic?

A sequence of data is called a Time series.

Examples :

• The temperature in Alpbach.

• An EEG signal.

We can do one of the following :

• Attempt to find the rules governing the dynamics of the system.

• Check if the orbit is on a Strange Attractor.

Page 4: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

0.0 20.0 40.0 60.0 80.0 100.0

Iterate Number n

0.0

0.2

0.4

0.6

0.8

1.0

xn

Random Time series

Page 5: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

0.0 20.0 40.0 60.0 80.0 100.0

Iterate Number n

0.0

0.2

0.4

0.6

0.8

1.0

xn

Logistic Map : r = 4.0

Page 6: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Embedding

Take the time series and plot the trajectories in a phase space. Do

this by plotting the phase variables at a later time as a function of

the variables at an earlier time. This is called a return map.

A typical trajectory will wander all over its attractor. This

procedure will reveal if the system is deterministic and will reveal

the dynamics on the attractor.

• If we are given the time series of an orbit of the logistic map,

the data points will all fall on a smooth curve if we plot xn+1

as a function of xn.

• If on the other hand we look at a random time series, the data

will not fall on a single curve.

• Water dripping from a faucet.

Page 7: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

0.0 0.2 0.4 0.6 0.8 1.0

xn

0.0

0.2

0.4

0.6

0.8

1.0

xn+1

Return Map for the random time−series

Page 8: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

0.0 0.2 0.4 0.6 0.8 1.0

xn

0.0

0.2

0.4

0.6

0.8

1.0

xn+1

Return Map for the time−series from the logistic map

Page 9: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Is the weather chaotic ?

• This is a very hard question.

• There is no record of the weather ever repeating itself.

• The weather sometimes gets to a state where it is close to a

state it has been in earlier, at least over a localized region.

This is called an analogue.

• The weather does not have the same history starting at an

analogue. this would indicate a sensitivity to initial conditions.

• It would seem that the weather is actually an infinite

dimensional system because we presumably need to specify the

initial conditions at every point in the earth’s atmosphere.

Page 10: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

• The atmosphere is a dissipative system and the weather has

settled into an attractor.

• Current weather prediction is through the use of mathematical

models on computers. We “know” the equations that weather

obeys.

• The number of variables in these models, i.e., the size of the

phase space is enormous. Some of the good models use five

million variables. It is not possible to do an embedding or to

reconstruct the attractor from the weather data given the size

of the phase space.

• The computer models show sensitivity to changes in initial

conditions. It is very likely that they are chaotic.

• It seems reasonable that the global weather system is also

chaotic.

Page 11: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Astrophysical Chaos

Hill’s reduced problem - A light satellite revolving around two

massive objects.

This problem has a long history. Henri Poincare’s study of this

problem laid the foundations of two branches of modern

mathematics- Topology and Dynamical System Theory.

The orbit is chaotic for a variety of initial conditions.

This is not a cause for alarm because there are also stable orbits

coexisting with chaotic orbits (this is a Hamiltonian system) and

the earth is not going to go chaotic anytime soon.

There however are objects in the solar system that are on these

chaotic trajectories and every so often they slam into the earth’s

atmosphere. They are meteorites.

Page 12: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 13: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 14: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaos in Biology

From Clocks to Chaos - L. Glass and M. C. Mackey.

• Population dynamics.

• Chaos in the heart - Arrhythmia.

• Chaos in the brain - Epilepsy.

• Epidemiology.

Population dynamics - The logistic map is a caricature of a rule

governing population dynamics. It displays chaos.

Page 15: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaos in the Heart

The heart has it’s own pacemaker, the SA-Node.

Both the SA-Node and external Pacemakers work by

frequency-locking.

The heart’s cycle feeds back to its pacemaker keeping a regular

rhythm.

If this rhythm becomes chaotic, it leads to arrhythmia, which can

lead to cardiac arrest and to death.

Frequency-locking can be seen in the circle map

θn+1 = θn + ω + k sin(θn)

L. Glass proposed a model for the frequency locking in the heart.

The theory agrees well with experiments on cells from a chicken

heart.

Page 16: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 17: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaos in the Social Sciences

• It is not clear that society or individuals behave

deterministically.

• The number of variables is large so that the phase space is

enormous.

• As in the case of weather, there is no low dimensional chaos.

No long-range prediction.

• Unlike the case of weather, there are no known underlying

equations. Even short range prediction is hard.

• Chaos has a very important philosophical role. It challenges

some of the existing notions and brings up new paradigms in

the description of social systems.

Page 18: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaos in Economics ?

• No Low-dimensional Chaos.

• It is not easy to predict economic systems or to beat the stock

market.

• It is not currently possible to use chaos theory quantitatively in

the study of economic systems.

• There are other notions that come up in the study of nonlinear

complex systems that may describe social, biological and

economic systems. For example, it is possible that these

systems are self-organized.

• Some economic quantities obey interesting (and not very well

understood) scaling laws.

Page 19: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

Chaotic Attractors

Dissipative dynamical systems have attractors.

If these attractors are fractal, they are called Strange Attractors.

A strange attractor usually corresponds to a chaotic orbit being

attracting.

Examples :

• The forced-damped pendulum.

• Periodically modulated double well.

Page 20: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

0 p/2 p 3p/2 2p x Mod 2p

−3.0

−2.0

−1.0

0.0

v

Poincare Section for the Forced−damped pendulum

g = 0.5, f = 1.8, w = 0.63.

Poincare section for the forced damped pendulum.

Page 21: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

−1.0 −0.5 0.0 0.5 1.0

x

−0.2

0.0

0.2

0.4

0.6

0.8v

Stroboscopic section for the double well

f = 0.75, g = 1.0, w = 2p/5.

Page 22: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w

The butterfly effect vs. attractors

After some time, the transient effects from the initial conditions die

out and a dissipative system settles into its asymptotic state.

The asymptotic state is a chaotic trajectory if the system has a

strange attractor.

All chaotic trajectories are very sensitive to small changes.

Thus, we cannot predict a chaotic trajectory exactly, even if we

know the attractor.

The attractor however gives us a lot of information about the

dynamics.

Page 23: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 24: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 25: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 26: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 27: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 28: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 29: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 30: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 31: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 32: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 33: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 34: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 35: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 36: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 37: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 38: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 39: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 40: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 41: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 42: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 43: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 44: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 45: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 46: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 47: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 48: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 49: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 50: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 51: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 52: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w
Page 53: C h a o s i n t h e r e a l w o r l d - University of Arizonashankar/efa/efa4.pdf¥ I f o n t h e o t h e r h a n d w e lo o k a t a r a n d o m t im e s e r ie s , t h e d a t a w