16
Buckling behavior of Steel Truss Buckling behavior of Steel Truss Rangsan Wongjeeraphat by Rangsan Wongjeeraphat Supervisor: Dr Todd Helwig Supervisor: Dr . Todd Helwig STEER The Common Conference Center J J Pickle Research Campus March 4, 2010 J.J. Pickle Research Campus The University of Texas at Austin

Buckling Behaviour of Steel Truss-wongjeeraphat

  • Upload
    hoojzte

  • View
    221

  • Download
    3

Embed Size (px)

DESCRIPTION

Buckling Behaviour of Steel Truss-wongjeeraphat

Citation preview

Page 1: Buckling Behaviour of Steel Truss-wongjeeraphat

Buckling behavior of Steel TrussBuckling behavior of Steel Truss

Rangsan Wongjeeraphat

by

Rangsan Wongjeeraphat

Supervisor:  DrTodd HelwigSupervisor:  Dr.Todd Helwig

STEER

The Common Conference CenterJ J  Pickle Research Campus

March 4, 2010

J.J. Pickle Research CampusThe University of Texas at Austin

peterlo
Sticky Note
http://fsel.engr.utexas.edu/about/events/steer_2010/seminar/wongjeeraphat.pdf
Page 2: Buckling Behaviour of Steel Truss-wongjeeraphat

Study Objectivey j

To improve the understanding of the stability To improve the understanding of the stability behavior of truss systems

To study the requirements for both lateral and torsional bracing requirements for truss and torsional bracing requirements for truss system

Page 3: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss Behavior

C

PPP

TT

The truss system consists of a collection of axial loaded members to form a flexural system. Therefore question often arise about the truss behaving like a column or more often arise about the truss behaving like a column or more like a beam

Page 4: Buckling Behaviour of Steel Truss-wongjeeraphat

Design of brace for trussg

AISC S ifi iAISC SpecificationIn the appendix 6 of commentary section on stability bracing for columns and beamsbracing for columns and beams

Page 5: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss Bracingg

Several factors affect truss buckling behavior:

Internal factors: Out‐of‐plane stiffness of web elementspThe axial compressive loads in the chordsThe alignment of the vertical and diagonal web elements

External factors:The local and global initial imperfectionsLoad location and positionLoad location and positionType of bracesLocation of braces on the cross‐section

Page 6: Buckling Behaviour of Steel Truss-wongjeeraphat

Overview of Experimental Programp g

The experimental program includes several t ti   t  i l di

Lateral stiffness test

testing stages, including:

Lateral stiffness testLoad height effect test

Top chord loading Bottom chord loading

Tests on torsional bracing systemBracing at top chord  Bracing at top chord  Bracing at bottom chord (Pony Truss)

Tests on lateral bracing system

Page 7: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss System with Lateral Bracing y g

P P Lateral brace 

link

(Stiffness = 0.2, 0.5, 0.8 kip/in)

Height adjustable to ffchange stiffness

Lateral brace system

Truss cross‐section at brace point

Page 8: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss System with Lateral Bracing y g

P P

linklink

Lateral brace system

Truss cross‐section at brace point

Page 9: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss System with Torsional Bracing y g

Bottom chord loading case Top chord loading caseg

P P

p g

Torsional brace

P P

Truss cross‐section at third point

Torsional brace

Truss cross‐section at third pointthird point third point

Page 10: Buckling Behaviour of Steel Truss-wongjeeraphat

Truss System with Torsional Bracing y g

Gravity Load Gravity Load Simulator

Torsional brace

Bottom chord loading test with 3 small torsional braces at bottom chord

Page 11: Buckling Behaviour of Steel Truss-wongjeeraphat

Load‐Lateral Deflection Curve

72‐ft span

14 0

12.0

14.0

8.0

10.0

ad (kips)

4.0

6.0

Total Loa Top chord ‐ Bottom chord loading test

Bottom chord ‐ Bottom chord loading test

Top chord ‐ Top chord loading test

0.0

2.0

Bottom chord ‐ Top chord loading test

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Lateral Deflection (in)

Page 12: Buckling Behaviour of Steel Truss-wongjeeraphat

Results of buckling test

Lateral Deflection at mid span top chord

gWith lateral braces

60

70

Lateral Deflection at mid span top chord

No Lar Br

40

50

kips)

1 Lat Br K = 0.2 k/in

1 Lat Br K = 0.5 k/in

1 Lat Br K = 0.8 k/in

2 Lat Br K =0.2 k/in

2 Lat Br K = 0 5 k/in

20

30

Total Loa

d ( 2 Lat Br K = 0.5 k/in

2 Lat Br K = 0.8 k/in

10

20

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Lateral Deflection (in)

Page 13: Buckling Behaviour of Steel Truss-wongjeeraphat

Results of buckling testg

Lateral Deflection at mid span top chord

With torsional braces

60

70Lateral Deflection at mid span top chord

40

50

kips)

No Tor Br: BC Load

2 Sm Tor Br at BC: BC Load

30

Total loa

d (k 3 Sm Tor Br at BC: BC Load

2 Lrg Tor Br at BC: BC Load

No Tor Br: TC Load

2 Sm Tor Br at TC: TC Load

3 S T B t TC TC L d

10

20 3 Sm Tor Br at TC: TC Load

2 Lrg Tor Br at TC: TC Load

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Lateral deflection (in)

Page 14: Buckling Behaviour of Steel Truss-wongjeeraphat

Current work

• Developing the FEA model• Verify the model with the laboratory test resultsVerify the model with the laboratory test results• Parametric study

FEA model with 3 large torsional braces at bottom chord with 

bottom chord loading

Page 15: Buckling Behaviour of Steel Truss-wongjeeraphat

Summaryy

The load height effect exists in truss and causes the truss system to behave similar to a beamthe truss system to behave similar to a beamAdding the proper lateral and torsional bracing stiffness as well as the proper number of braces p pis necessary to improve the buckling capacity of a truss. Th   ff ti   f  ddi    l t l b  The effectiveness of adding a lateral brace decreases with an increase in the number of the bracesAdding torsional braces is more effective in top chord loading cases than in bottom chord l dloading cases

Page 16: Buckling Behaviour of Steel Truss-wongjeeraphat

THANK YOUTHANK YOU

Question ?