BubbleDew

Embed Size (px)

Citation preview

  • 7/30/2019 BubbleDew

    1/15

    Lecture 6: Bubble and Dew Point1

    Bubble Point and Dew Point Calculations

    In the last lecture we discussed:

    An isothermal flash separations

    The derivation and solution of the Rachford Rice equation

    Newtons iterative procedure to solve for the roots of the RR equation

    A numerical example to demonstrate this approach.

    This lecture will cover: An example of using the Rachford Rice Procedure with

    a simple spreadsheet

    Bubble point and Dew Point temperature and pressure

    calculations

    An example of a dew point temperature calculation

  • 7/30/2019 BubbleDew

    2/15

    Lecture 6: Bubble and Dew Point2

    Multicomponent Flash Calculations

    For this system there are 3C+10 variables: F, V, L, {T, P}3, Q, {xi , yi ,zi}C

    and C+5 degrees of freedom.

    We specify the C+3 variables F, zi, TF, PF and two additional variables

    Liquid Feed Vapor out

    Flash Drum

    F, zi, TF, PF

    L, xi, TL, PL

    Liquid out

    V, yi, TV, PV

    Q

    Common Specifications:

    TV,PV Isothermal Flash

    V/F=0, PL Bubble-Point Temperature

    V/F=1, PV Dew-Point Temperature

    V/F=0, TL Bubble-Point Pressure

    V/F=1, TV Dew-Point Pressure

    Q=0, PV Adiabatic Flash

    Q, PV Nonadiabatic flash

    V/F, PV Percent Vaporization Flash

    Last lecture

  • 7/30/2019 BubbleDew

    3/15

    Lecture 6: Bubble and Dew Point3

    Isothermal Flash Calculations

    Liquid Feed

    If we specify F, zi, TF, PF and TV ,PV then we apply the Rachford-Rice procedure:

    Vapor out

    Flash Drum

    F, zi, TF, PF

    L, xi, TL, PL

    Liquid out

    V, yi, TV, PV

    Q

    Steps 1&2: TL TV

    Step 3: Solve Rachford-Rice for V/F.

    PL PV

    Step 4: V F

    Steps 5 and 6:

    Step 7:

    Step 8:

    Xi Zi

    Ki 1Yi

    KiZiKi 1

    L FF

    QVhv Lhl Fhf

    Determine V

    Determine L

    Determine Q

  • 7/30/2019 BubbleDew

    4/15

    Lecture 6: Bubble and Dew Point4

    Bubble Point Pressure Calculations

    Liquid Feed

    For a bubble point pressure calculation we specify F, z i, TF, PF, TL and that we are at

    the bubble point.

    Vapor out

    Flash Drum

    F, zi, TF, PF

    L, xi, TL, PL

    Liquid out

    V=0, yi, TV, PV

    Q

    f(0) Zi Ki 1 i

    0

    At the bubble point there is equilibrium between the vapor and liquid phases, but the system

    is completely liquid and thus the vapor fraction is zero.

    f()

    Zi Ki 1 Ki 1i

    0

    ZiKii

    1

  • 7/30/2019 BubbleDew

    5/15

    Lecture 6: Bubble and Dew Point5

    Bubble Point Temperature Calculations

    Liquid Feed

    For a bubble point temperature calculation we specify F, z i, TF, PF, PL and that we are at

    the bubble point.

    Vapor out

    Flash Drum

    F, zi, TF, PF

    L, xi, TL, PL

    Liquid out

    V=0, yi, TV, PV

    Q

    f(0) Zi Ki 1 i

    0

    At the bubble point there is equilibrium between the vapor and liquid phases, but the system

    is completely liquid and thus the vapor fraction is zero.

    f()

    Zi Ki 1 Ki 1i

    0

    ZiKii

    1

  • 7/30/2019 BubbleDew

    6/15

    Lecture 6: Bubble and Dew Point6

    Dew Point Temperature Calculations

    Liquid Feed

    For a Dew Point Temperature calculation we specify F, zi, TF, PF, PV and that we are at

    the dew point.

    Vapor out

    Flash Drum

    F, zi, TF, PF

    L=0, xi, TL, PL

    Liquid out

    V, yi, TV, PV

    Q

    At the dew point there is equilibrium between the vapor and liquid phases, but the system

    is completely vapor and thus the vapor fraction is one.

    f()

    Zi Ki 1 Ki 1i

    0

    Zi

    Kii 1f(1)

    Zi Ki 1 Kii

    0

  • 7/30/2019 BubbleDew

    7/15Lecture 6: Bubble and Dew Point7

    Dew Point Pressure Calculations

    Liquid Feed

    For a Dew Point Pressure calculation we specify F, zi, TF, PF, PV and that we are at

    the dew point.

    Vapor out

    Flash Drum

    F, zi, TF, PF

    L=0, xi, TL, PL

    Liquid out

    V, yi, TV, PV

    Q

    At the dew point there is equilibrium between the vapor and liquid phases, but the system

    is completely vapor and thus the vapor fraction is one.

    f()

    Zi Ki 1 Ki 1i

    0

    Zi

    Kii 1f(1)

    Zi Ki 1 Kii

    0

  • 7/30/2019 BubbleDew

    8/15Lecture 6: Bubble and Dew Point8

    Bubble Point and Dew Point Calculations

    To solve the bubble point and dew point problems we must find the unspecified temperature

    or pressure which satisfies the Rachford Rice expressions.

    Zi

    Kii 1

    ZiKii

    1Dew PointBubble Point

    Bubble Point or Dew Point Temperature Procedure:

    Step 1: Guess a temperature.

    Step 2: Use the given product pressure and guess temperature to determine the K-values fromthe DePriester chart.

    Step 3: Calculate the Rachford Rice expression appropriate to the equilibrium condition.

    Step 4: Guess a new higher temperature if K values must be higher. Otherwise, guess a

    lower temperature.

    Step 5: Repeat Steps 3 and 4 until the Rachford Rice equation is satisfied.

    Bubble Point or Dew Point Pressure Procedure:

    Step 1: Guess a pressure.

    Step 2: Use the given product temperature and guess pressure to determine the K-values from

    the DePriester chart.

    Step 3: Calculate the Rachford Rice expression appropriate to the equilibrium condition.

    Step 4: Guess a new lower pressure if K values must be higher. Otherwise, guess a

    higher pressure.

    Step 5: Repeat Steps 3 and 4 until the Rachford Rice equation is satisfied.

  • 7/30/2019 BubbleDew

    9/15Lecture 6: Bubble and Dew Point

    9

    Example: Rachford-Rice

    A flash chamber operating 80 degrees C and 500kPa is separating 1000 kg moles/hr of a

    feed that is 10 mole %ethane, 5 mole %propane, 15 % n-butane, 10 % n-pentane,

    12 mole % isopentane, 8 mole %n-hexane, 30 mole %heptane and 10% nonane.

    What are the product compositions and flow rates?

    y1 (ethane) = 0.358y2 (propane) = 0.132

    y3 (n-butane) = 0.236

    y4 (n-pentane) = 0.11

    y5 (isopentane) = 0.079

    y6 (n-hexane) = 0.03

    y7 (heptane) = 0.051

    y8 (nonane) = 0.003

    x1 (ethane) = 0.033x2 (propane) = 0.029

    x3 (n-butane) = 0.128

    x4 (n-pentane) = 0.123

    x5 (isopentane) = 0.105

    x6 (n-hexane) = 0.093

    x7 (heptane) = 0.365

    x8 (nonane) = 0.125

    V/F=0.207V=207kg/hr

    L=793kg/hr

    K1 (ethane) = 11.0

    K2 (propane) = 4.6

    K3 (n-butane) = 1.85

    K4 (n-pentane) = 0.75K5 (isopentane) = 0.9

    K6 (n-hexane) = 0.32

    K7 (heptane) = 0.14

    K8 (nonane) = 0.026

    From the Depriester chart:

  • 7/30/2019 BubbleDew

    10/15Lecture 6: Bubble and Dew Point

    10

    Depriester Determination of K-Values

  • 7/30/2019 BubbleDew

    11/15Lecture 6: Bubble and Dew Point

    11

    Example: Dew Point Temperature

    A flash chamber operating 400 kPa pressure is producing a top product of

    35 % n-butane, 30 % n-pentane, 15 mole %n-hexane, 20 mole %heptane.

    What is the temperature of the flash drum to operate at the dew point?

    x1 (n-butane) =

    x2 (n-pentane) =

    x3 (n-hexane) =

    x4 (heptane) =

    V/F=

    T=

    From the Depriester chart:

    y1 (n-butane) = 0.35

    y2 (n-pentane) = 0.3

    y3 (n-hexane) = 0.15

    y4 (heptane) = 0.2

    T=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    T=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    T=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    T=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    ZiKii

    ZiKii

    ZiKii

    ZiKii

  • 7/30/2019 BubbleDew

    12/15Lecture 6: Bubble and Dew Point

    12

    K-Values Iterations for Dew Point Temperature

  • 7/30/2019 BubbleDew

    13/15Lecture 6: Bubble and Dew Point

    13

    Example: Bubble Point Pressure

    A flash chamber operating 80 degrees C is producing a bottoms product of

    15 % n-butane, 20 % n-pentane, 25 % n-hexane, 40 % heptane.

    What is the pressure of the flash drum to operate at the bubble point?

    x1 (n-butane) = 0.15x2 (n-pentane) = 0.20

    x3 (n-hexane) = 0.25

    x4 (heptane) = 0.4

    V/F=P=

    P=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    From the Depriester chart:

    y1 (n-butane) =y2 (n-pentane) =

    y3 (n-hexane) =

    y4 (heptane) =

    P=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    P=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    P=

    K1 (n-butane) =

    K2 (n-pentane) =K3 (n-hexane) =

    K4 (heptane) =

    ZiKii

    ZiKii

    ZiKii

    ZiKii

  • 7/30/2019 BubbleDew

    14/15Lecture 6: Bubble and Dew Point

    14

    Depriester Determination of K-Values

  • 7/30/2019 BubbleDew

    15/15

    Lecture 6: Bubble and Dew Point15

    Summary

    Next Lecture will cover:

    Ternary Liquid-Liquid extractions.

    Ternary phase diagrams.

    A procedure to determine the product compositions and

    flow rates of a liquid-liquid extraction separation.

    This lecture covered:

    Using a simple spreadsheet to apply the Rachford Rice

    Procedure Bubble point and Dew Point temperature and pressure

    calculations

    An example of a dew point temperature calculation