15
COSTActionTU0904 IntegratedFireEngineeringandResponse WG1DanPintea,[email protected] 33THERMALANALYSISOFADOUBLEDECKBRIDGE Summary Thegoalofthepresentcasestudyistopresentthethermalstudyofdifferentcomponentsofadoubledeck bridge, for establishing the temperature evolution in a fire situation. Unprotected as well as protected casesareanalysedusingaprotectionmaterialdescribedindetailintheparagraphentitled“TheMaterials”. Three structural elements have been submitted to a natural fire curve obtained through a CFD analysis givenindetailintheparagraphentitled“TheFire”. 33.1INTRODUCTION Thegoalofthepresentprojectisthethermalstudyofdifferentcomponentsofadoubledeckbridge,for establishing the temperature evolution in a fire situation. Unprotected as well as protected cases are analyzedusingaprotectionmaterialdescribedindetailintheparagraphentitled“TheMaterials”. Three structural elements have been submitted to a natural fire curve obtained through a CFD analysis givenindetailintheparagraphentitled“TheFire”. Fig.33.1Thediagonalofthelatticegirder 356

Bridges

Embed Size (px)

DESCRIPTION

Bridges

Citation preview

Page 1: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

WG1��Dan�Pintea,�[email protected]

33�THERMAL�ANALYSIS�OF�A�DOUBLE�DECK�BRIDGE��

Summary�

The�goal�of�the�present�case�study�is�to�present�the�thermal�study�of�different�components�of�a�double�deck�

bridge,� for� establishing� the� temperature� evolution� in� a� fire� situation.� Unprotected� as� well� as� protected�

cases�are�analysed�using�a�protection�material�described�in�detail�in�the�paragraph�entitled�“The�Materials”.�

Three� structural� elements� have� been� submitted� to� a� natural� fire� curve� obtained� through� a� CFD� analysis�

given�in�detail�in�the�paragraph�entitled�“The�Fire”.�

33.1�INTRODUCTION�

The�goal�of�the�present�project�is�the�thermal�study�of�different�components�of�a�double�deck�bridge,�for�

establishing� the� temperature� evolution� in� a� fire� situation.� Unprotected� as� well� as� protected� cases� are�

analyzed�using�a�protection�material�described�in�detail�in�the�paragraph�entitled�“The�Materials”.�

Three� structural� elements� have� been� submitted� to� a� natural� fire� curve� obtained� through� a� CFD� analysis�

given�in�detail�in�the�paragraph�entitled�“The�Fire”.�

Fig.�33.1�The�diagonal�of�the�lattice�girder�

356

Page 2: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

��Fig.�33.2�The�box�girder�

Fig.�33.3�The�upper�crossbeam�

� The�first�structural�element�is�a�diagonal�from�the�lattice�girder�(see�Fig.�33.1).�

� The�second�structural�element�is�the�box�girder�(see�Fig.�33.2)�

� The�third�element�is�the�upper�crossbeam�(see�Fig.�33.3)�

Since�the�crossbeam�has�different�widths�of�the�upper�flange�and�web�on�its�span,�a�conservative�beam�is�

analysed�having�the�minimum�flange�and�web�thicknesses�(see�Fig.�33.3).�

357

Page 3: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

33.2�THE�MATERIALS�

The�material�laws�and�physical�principles�of�the�thermal�analysis�are�based�on�the�Eurocode�ENV�1993�1�2�

and�1994�1�2.�

Therefore�the�thermal�properties�of�the�steel�for�the�diagonal�of�the�lattice�girder,�the�box�girder�and�the�

upper�crossbeam�are�those�given�in�Eurocode�ENV�1993�1�2.�

Convection�coefficients�for�the�hot�surfaces�of�50�W/m2K�and�for�the�cold�surfaces�of�9�W/m2K�are�used.�

The�relative�emissivity�is�0.5�for�steel.�

On�the�upper�crossbeam�the�sheathing�is�assimilated�to�a�siliceous�concrete�from�Eurocode�1994�1�2,�with�

a�water�content�of�26�l/m3,�similar�convection�coefficients�on�the�cold�and�hot�surfaces�as�for�the�steel�and�

a�relative�emissivity�of�0.56.�

The�protection�material�that�is�used�for�the�protected�simulations,�PROMATECT�has�the�following�thermal�

properties�according� to� “Promat�HTI”:� a� constant� specific�heat�of�1130� J/kg�K,� a� constant�density�of�700�

kg/m3.�No�water�is�considered�in�this�material,�the�convection�coefficients�for�the�hot�and�the�cold�surfaces�

are�those�from�the�steel�and�concrete�elements.�The�relative�emissivity�is�0.56�as�for�the�concrete�material.�

The� single� property� that� has� a� linear� distribution� is� the� thermal� conductivity.� The� manufacturer� of� the�

PROMATECT� gives� the� thermal� conductivities� only� up� to� 600°C.� For� this� study�we�have� extrapolated� the�

thermal�conductivity�values�up�to�1200°C�(see�Tab.�33.1).�

Tab.�33.1�The�thermal�properties�of�the�protection�material�(PROMATECT)�

Temperature� Thermal�Conductivity� Specific�Heat� Density�[°C]� [W/m�K]� [J/kg�K]� [kg/m3]�� 0� 0.10� 1130� 700�� 200� 0.12� 1130� 700�� 400� 0.14� 1130� 700�� 600� 0.16� 1130� 700�� 800� 0.18� 1130� 700�� 1000� 0.20� 1130� 700�� 1200� 0.22� 1130� 700�

33.3�THE�FIRE�

Up�to�three�fire�curves�have�been�applied�on�the�cross�sections�of�the�structural�elements.�The�base�curve�

obtained�through�a�CFD�computation�is�the�curve�entitled�F1100�(see�Fig.�33.4)�which�reaches�a�maximum�

temperature�of�1142°C.�The�other�two�curves�are�obtained�from�the�base�curve�by�interpolating�the�values�

as�to�reach�a�peak�value�of�800°C�(the�curve�F800)�and�400°C�(the�curve�F400).�After�40�minutes�all�three�

curves�remain�constant�at�20°C.�

358

Page 4: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 4 8 12 16 20 24 28 32 36 40

Time [min]

Tem

p [°

C]

F1100F800F400

Fig.�33.4�The�fire�curves�used�in�the�analysis�

The� following� three� figures� show� the� boundary� conditions� considered� on� each� of� the� cross� sections�

(thermal�boundary�conditions).�

�Fig.�33.5�Applied�fire�curves�on�the�protected�and�unprotected�diagonal�

359

Page 5: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

Fig.�33.6�Applied�fire�curves�on�the�protected�and�unprotected�box�girder�

Fig.33.7�Applied�fire�curves�on�the�unprotected�crossbeam�

33.4�MESHING�AND�PROTECTION�

All� the�models� are�meshed� using� SAFIR� 2D� SOLID� elements�with� four� nodes.� A� rather� regular,� Cartesian�

mesh�is�sought�for�easier�processing�of�the�results�of�the�analysis.�A�sufficiently�fine�mesh�for�each�case�is�

used� for� capturing� with� good� accuracy� the� temperature� distribution� having� a� good� ratio� computation�

time/mesh.�

360

Page 6: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

All�the�figures�that�follow�show�the�mesh�of�the�cross�section,�the�materials�used,�and�the�frontiers�(applied�

fire�conditions�on�the�cross�section).�

The�diagonal�of�the�lattice�girder�is�analysed�in�two�cases,�an�unprotected�case,�with�the�fire�applied�on�the�

bare�steel�of�the�hollow�tube�(see�Fig.�33.8),�and�a�protected�case�with�a�15�mm�box�protection�using�the�

PROMATECT�material�presented�above�(see�Fig.�33.9).�

The�box�girder�is�analysed�in�two�cases,�an�unprotected�case�with�the�fire�applied�on�the�bare�steel,�on�the�

contour�of�the�box�girder�and�a�box�protected�case�using�a�15�mm�PROMATECT�on�the�contour.��

The�crossbeam�is�analysed�in�four�configurations:��Case�A�–�an�unprotected�steel�beam�with�the�fire�(F1100)�

engulfing� the� lower� part� of� the� girder� (see� Fig.� 33.10),� Case� B� –� a� ceiling� protection� using� a� 15� mm�

PROMATECT�protection,�with�the�fire�(F1100)�applied�on�the�lower�edge�of�the�protection�(see�Fig.�33.11),�

Case�C�–�a�box�protection�around�the�girder�with�15�mm�of�PROMATECT�(see�Fig.�33.12),�and�Case�D�–�a�box�

protection�around�the�girder�extending�on�the�lower�edge�of�the�upper�flange�(see�Fig.�33.13).�

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

11

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

111

111111 1 111 11 111 11 11 112

111

X

Y

Z

Diamond 2004 for SAFIR

FILE: unprotectedNODES: 368ELEMENTS: 276

SOLIDS PLOTFRONTIERS PLOT

STEELEC3

F11001F4002

Fig.�33.8��Mesh,�materials�and�frontiers�on�the�unprotected�diagonal�of�the�lattice�girder�

361

Page 7: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

11

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11121 21 2

1 21 2

1 2

1 2

21

21

21

21

21

21

21

21

21

1

1

111111 111

1

1

1

1

1

1

1

1

1

111 11 1111 1 11 1 1111 1 11 1

2

22222

111 1 1 11

2

2

2

2

2

2

2

2

2

2

X

Y

Z

Diamond 2004 for SAFIR

FILE: ProtectedNODES: 728ELEMENTS: 624

SOLIDS PLOTFRONTIERS PLOT

STEELEC3USER1

F11001F4002

Fig.�33.9�Mesh,�materials�and�frontiers�on�the�protected�diagonal�of�the�lattice�girder�

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

11

1111111111111111111111111111111111111111111111111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

11

2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

X

Y

Z

Diamond 2004 for SAFIR

FILE: PoutreANODES: 478ELEMENTS: 366

SOLIDS PLOTFRONTIERS PLOT

STEELEC3SILCONCEC2

F11001F202

Fig.�33.10�Mesh,�materials�and�frontiers�on�the�unprotected�crossbeam�(case�A)�

362

Page 8: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22

X

Y

Z

Diamond 2004 for SAFIR

FILE: PoutreBNODES: 728ELEMENTS: 561

SOLIDS PLOTFRONTIERS PLOT

STEELEC3SILCONCEC2USER1

F201F11002

Fig.�33.11�Mesh,�materials�and�frontiers�on�the�ceiling�protected�crossbeam�(case�B)�

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 11111111 111111

111111111111111111111111111111

11111111111111111111111111111 1

2222 2222

X

Y

Z

Diamond 2004 for SAFIR

FILE: PoutreCNODES: 802ELEMENTS: 627

SOLIDS PLOTFRONTIERS PLOT

STEELEC3SILCONCEC2USER1

F11001F202

Fig.�33.12�Mesh,�materials�and�frontiers�on�the�box�protected�crossbeam�(case�C)�

363

Page 9: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 22222222 222222

22222222222222222222222222222

222222222222222222222222222

1111 1111

2 22 2 2 2 2 2 2 2 22 222 2 2 2 2 2 2 2222222

X

Y

Z

Diamond 2004 for SAFIR

FILE: PoutreDNODES: 982ELEMENTS: 801

SOLIDS PLOTFRONTIERS PLOT

STEELEC3SILCONCEC2USER1

F201F11002

Fig.�33.13��Mesh,�materials�and�frontiers�on�the�box�protected�crossbeam�(case�D)�

33.5�RESULTS�

Since�the�fire�curves�applied�on�the�cross�sections�have�all�a�descending�branch,�the�cross�sections�reach�a�

maximum� temperature� at� a� certain� time.� The� temperatures� decrease� afterwards� more� steeply� for� the�

unprotected�sections�and�slowly�for�the�protected�ones.��

The�unprotected�diagonal�of�the�lattice�girder�reaches�its�maximum�temperature�of�780°C�at�22.5�minutes�

(1350�sec).�The�temperature�evolutions�in�four�representative�points�on�the�cross�section�(see�Fig.�33.14)�

are�shown�in�the�Fig.�33.15.�

On�the�protected�cross�section�the�maximum�temperature�of�125.4°C�is�reached�after�32.5�minutes�(2000�

sec),�(there�is�a�delay�in�the�heating�of�the�cross�section�due�to�the�protection).�While�the�exposed�side�to�

the�lower�temperatures�(F400)�tends�asymptotically�towards�90°C�after�1�hour�of�fire�exposure,�the�rest�of�

the�cross�section�is�already�in�the�cooling�phase�(see�Fig.�33.16).�

The�unprotected�box�girder�reaches�its�maximum�temperature�of�798°C�at�22.5�minutes�(1350�sec),�a�steep�

descending�phase�following�this�peak.�For�the�protected�box�girder,�with�a�15�mm�PROMATECT�protection,�

the� temperatures� do�not� exceed�145°C,� and� after� a� heating�phase�of� 33.5�minutes� (2000� sec)�when� the�

maximum�temperature�of�143.8°C�is�reached,�the�cross�section�starts�to�cool�slowly.�No�figures�are�shown.�

364

Page 10: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

Fig.�33.14�The�representative�points�on�the�cross�section�where�temperature�evolution�in�sought�

Time - Temperature Plot

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 344Node 183Node 367Node 186

Fig.�33.15�Temperature�evolution�on�the�unprotected�diagonal�of�the�lattice�girder�

365

Page 11: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

Time - Temperature Plot

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 344Node 183Node 367Node 186

Fig.�33.16�Temperature�evolution�on�the�protected�diagonal�of�the�lattice�girder�

Time - Temperature Plot

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 56Node 21Node 156

Fig.�33.17�Temperature�evolution�on�the�unprotected�crossbeam�(case�A)�

366

Page 12: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

The� temperature� evolution� on� the� unprotected� crossbeam� (Case� A)� is� shown� in� Fig.� 33.17.� The� three�

representative�points�in�which�the�temperature�evolution�is�checked�are�selected�in�the�lower�flange�(Node�

21),�mid�height�of�the�web�(Node�56)�and�upper�flange�(Node�156).��

In�this�case,�because�of�the�low�section�factor�of�the�steel�girder,�the�maximum�temperature�reaches�

1119°C�after� 15.5�minutes� (900� sec)� in� the�hottest� spot�of� the� cross� section� (Node�56,�which� is� the�mid�

height�of�the�web),�followed�by�a�steep�decrease�after�22�minutes�(1300�seconds).�

The�temperatures� in�the�upper�web�are� lower�than�the�ones� in�the�rest�of�the�steel,�due�to�the�concrete�

slab�which�acts�as�a�heat�sink.�The�maximum�temperatures�in�the�upper�flange�do�not�exceed�750°C.�

Time - Temperature Plot

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 56Node 21Node 156

Fig.�33.18�Temperature�evolution�on�the�ceiling�protected�crossbeam�(case�B)�

For�the�first�protection�scenario�(Case�B),�using�a�15�mm�PROMATECT�ceiling�under�the�lower�flange,�the�

temperature� evolution� is� presented� in� Fig.� 33.� 18.� The� temperature� evolution� is� presented� in� the� same�

nodes�as�in�the�previous�case.�

The�maximum�temperature�on�the�cross�section�of�166.2°C�is�attained�in�the�node�56�(the�mid�height�of�the�

web)�at�33.5�minutes.�

In�the�box�protected�case�(Case�C),�two�extra�nodes�where�the�temperature�is�inspected�are�added�to�the�

set�of�nodes�(see�Fig.�33.19).�

367

Page 13: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

Fig.�33.19��Representative�nodes�on�the�box�protected�cross�section�of�the�crossbeam�(case�C)�

Time - Temperature Plot

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 174Node 162Node 56Node 21Node 156

Fig.�33.20�Temperature�evolution�in�the�box�protected�crossbeam�(case�C)�

The�node�174�is�on�the�lower�edge�of�the�upper�flange,�at�a�distance�from�the�node�162�equal�to�half�of�the�

lower�flange�(�150�mm).�This�node�is�added�to�inspect�the�temperatures�in�the�unprotected�steel.�

368

Page 14: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

While�the�steel�inside�the�box�protection�has�a�temperature�of�up�to�300°C,�the�bare�upper�flange,�exposed�

to� the� fire� with� a� peak� of� 1100°C� reaches� at� 23� minutes� (1400� sec)� a� temperature� of� 744°C.� The�

temperature�evolution�in�the�five�representative�nodes�of�the�cross�section�is�presented�in�Fig.�33.20.�

The� last� protection� case� (Case� D),� with� a� 15� mm� PROMATECT� box� protection� around� the� girder,� and�

continued�under�the�upper�flange�gives�the�temperature�evolution�presented�in�Fig.�33.21.�The�same�nodes�

as�in�the�previous�model�are�inspected.�With�this�protection,�the�maximum�temperature�in�the�steel�girder�

at�34�minutes�is�274.3°C.�

Time - Temperature Plot

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time [minutes]

Tem

pera

ture

[°C

]

Node 56Node 21Node 174Node 162Node 156

Fig.�33.21�Temperature�evolution�on�the�extended�box�protected�crossbeam�(case�D)�

33.6�SUMMARY�AND�CONCLUSIONS�

This�case�study�presents�the�thermal�analysis�of�the�main�components�of�a�double�deck�bridge,�without�any�

protection� and� with� thermal� protection,� selecting� several� protection� scenarios� to� ensure� a� maximum�

protection�under�minimum�cost.�

Analysing�and�presenting� several� cases� to� the�beneficiary�gives�him� the�choice�of� selecting� the�best� cost�

effective�solution�to�be�used.�

Acknowledgement��

The� author� would� like� to� thanks� Prof.� dr.� ing.� Jean�Marc� Franssen� from� the� University� of� Liege� for� his�

invaluable�support�and�guidance.�

369

Page 15: Bridges

COST�Action�TU0904�Integrated�Fire�Engineering�and�Response�

References�

Cadorin,� 2003:� Cadorin,� J.F,� Pintea,� D.,� Dotreppe,� J.C,� Franssen,� J.M,� � A� tool� to� design� steel� elements�submitted�to�compartment� fires��Ozone�V2.�Part2:�Methodology�and�application,�Fire�safety�Journal,�Elsevier,�38,�2003,�439�451.�

CEC� Agreement� 7210�PA/PB/PC/PD/PE/PF/PR�060,� Natural� Fire� Safety� Concept,� Implementation� in� the�Eurocodes�and�Development�of�an�User�friendly�Design�Tool,�2001�

EN�1991�1�2���Eurocode�1,�Actions�on�structures.�General�actions.�–�Part�1�2:�Actions�on�structures�exposed�to�fire,�CEN.�

EN�1993�1�2,�Eurocode�2,�Design�of�steel�structures.�Part�1.2:�General�rules.�Structural�fire�design,�CEN�Franssen�J.�M.,�Safir�–�A�thermal/structural�program�modelling�structures�under�fire,�Engineering�Journal,�

AISC,�Vol.�42,�No�3,�2005,�143�158.��

370