Boundary Layer Flows

Embed Size (px)

DESCRIPTION

boundary

Citation preview

  • ME 116 Fluid Mechanics Boundary Layer Flows

    Fall 2014

    Deify Law

  • Pioneer of Boundary Layer Flows ~

    Ludwig Prandtl

    Large Reynolds number flow fields consist of viscous region in the boundary layer and

    inviscid region elsewhere

    No-slip condition at the wall or solid boundary: the fluid sticks to the surface

  • Boundary Layer Over a Flat Plate

    Reynolds number (Rex) where Laminar Boundary Layer becomes Turbulent

    Boundary Layer is about 2 x 105 to 3 x 106.

  • Boundary Layer Thickness

    Definitions

  • Boundary Layer Thickness,

    y 0.99u UAt

  • Boundary Layer Displacement

    Thickness, *

    *0

    bU U u bdy

    b is the depth

    *

    01

    udy

    U

    Based on

    Incompressible Continuity

    Applicable

    For

    Incompressible

    (Laminar or Turbulent),

    constant or

    variable pressure,

    steady flow

  • Boundary Layer Momentum Thickness,

    Based on momentum flux

    01

    u udy

    U U

  • Boundary Layer Displacement and

    Momentum Thicknesses

    Used for the Momentum Integral Equation

    Used for calculating local wall shear stress and drag force.

  • Momentum Integral Equation with

    Nonzero Pressure Gradient for Flows

    Past a Flat Plate (Von Karman)

    2 *wd dU

    U Udx dx

  • Boundary Layer Equations for a

    Laminar Flow past a Flat Plate

    Order of Magnitude Analysis (Scale Analysis) with assumptions reduce Navier-Stokes equations to

    these boundary layer equations

    v ux y

    0u v

    x y

    2

    2

    u u uu v

    x y y

    2D, Laminar, Incompressible

    Pressure is constant

    so pressure gradient

    is negligible, Steady Flows

    Continuity:

    X-Momentum:

    Scale:

  • Prandtl/Blasius Dimensionless

    Variable

    u yg

    U

    1/2

    ~x

    U

    1/2U

    yx

    1/2

    vxU f

  • Substitute u and v into the previous boundary layer equations

    and take the other derivatives with

    chain rule involving

    1/2

    vxU f

    '

    1/2

    '

    4

    u Ufy

    Uv f f

    x x

  • Blasius Equation: Conversion from

    PDE to ODE

    Boundary conditions: y=0; u=0, y=0; v=0

    y=infinity; u=U

    ''' ''2 0f ff

    '0, 0f f 0

    ' 1f

  • Blasius Solution Laminar Flow Past a Flat Plate without Pressure Gradient

    u/U = 0.99 when = 5.0

    Displacement Thickness

    Momentum Thickness

    5x

    yU

    * 1.721 1.721

    Rexx Ux

    0.664

    Rexx

  • Nondimensional Height vs.

    Nondimensional Streamwise Velocity

  • Determination of Friction Drag Force

    over a Flat Plate with Momentum

    Integral Equation

    2(1) (2)

    Drag U U dA u dA

    2Drag bU

  • Local Wall Shear Stress over a

    Flat Plate

    21w

    dDrag dU

    b dx dx

    3

    ''

    0 0

    0.332wy

    u U UUf

    y x x

    For Laminar Flow Past a Flat Plate:

  • Local Skin Friction or Local

    Friction Drag Coefficient (Cf)

    For Laminar Flow Past a Flat Plate:

    2

    0.664

    1 Re

    2

    wf

    x

    c

    U

    21

    2

    wfc

    U

  • Wall Shear Stress and

    Friction Drag Coefficient

    0

    1 Lw wdx

    L

    0

    1 LDf fC c dx

    L

    Blasius Solution

    For Laminar Flat Plate:

    1.328

    ReDf

    L

    C

  • Momentum Integral Boundary

    Layer Equation

    Using assumed velocity profiles to predict boundary layer information.

    For example, consider the laminar flow of an incompressible fluid past a flat plate at y=0.

    The boundary layer velocity profile is

    approximated as:

    Determine the shear stress using momentum integral equation. Compare results with the exact

    Blasius results.

    u y

    U

  • Comparison of Approximated Velocity

    Profiles used in Momentum Integral

    Equation with Exact Blasius Results

  • Transition from Laminar to

    Turbulent Flows over a Flat Plate

    Transitional Flow when: 5,Re 5 10x cr

  • Laminar and Turbulent Boundary

    Layer Properties (Flat Plate)

    Laminar (from

    Blasius Exact)

    Turbulent (from

    Power Law)

    Boundary Layer

    Thickness

    Wall Shear Stress

    Friction Drag

    Coefficient

    5.0

    Rexx

    1/5

    0.370

    Rexx

    3

    0.332wU

    x

    2

    1/50.0288

    Rew

    x

    U

    1.328

    ReDf

    L

    C 1/5

    0.0720

    ReDf

    L

    C

  • Friction Drag Coefficient for a Flat

    Plate Parallel to the Free Stream Flow

  • Boundary Layer Flows on Curved

    Surface

    Pressure gradient is not negligible.

    Fluid velocity at the edge of boundary layer is not constant.

  • Effects of Pressure Gradient

    The variation in the free-stream velocity, U, the fluid velocity at the edge of the boundary layer, is the cause of the existence of pressure gradient.

    dp dUU

    dx dx

  • Inviscid Flow Past a Circular

    Cylinder

  • Viscous Flow Past a Circular

    Cylinder Favorable Pressure Gradient

    Diminishes Boundary Layer

    Thickness

    Adverse Pressure Gradient

    Increases Boundary Layer

    Thickness