26
Molecular Dynamics

BOMD Input

Embed Size (px)

DESCRIPTION

l

Citation preview

Page 1: BOMD Input

Molecular Dynamics

Page 2: BOMD Input

Molecular Dynamics Simulation

xd

dVxm

dt

xdmamF

2

2

For electrons we have to solve the quantum Schroedinger Equation For nuclei we only consider that they move classically

Force on nuclei can be obtained from potential derivative

txxd

dV

mtx

ttxtxttx

ttxtxttx

1

Initial Condition: You give starting geometry and velocity then you calculate the force from your potential energy surface. Using the force you calculate the velocity and position change, then continue on.

For example for harmonic oscillator

eq

eq

xxkdx

dV

xxkxV

2

2

1

Page 3: BOMD Input

Wikipedia “Molecular Mechanics”

22

1eqxxkxV

aVV cos0

612

4xx

xV

Types of Force Fields used in Molecular Mechanics

Page 4: BOMD Input

On the fly simulation At every time step solve the electronic Schrodinger equation

Good Points 1. Accurate 2. Can describe reaction 3. Do not have to worry about fitting problems Bad Points 1. Computational time is great so can only be used for

short time propagation 2. Can not perform detailed analysis

Page 5: BOMD Input

Gaussian 09 BOMD input

Page 6: BOMD Input

G09 BOMD output 1

Page 7: BOMD Input

G09 BOMD output 2

Page 8: BOMD Input

• Euler method (first order method take gradient)

Method of Propagation1

• 4th order Runge-Kutta propagation : add up contribution along the way

ttxxtxtxfdt

dxfinal step in time ;, 00

ttxfxx nnnn ,1

tttkxfktttkxfk

tttkxfktxfk

tkkkkxx

nnnn

nnnn

nn

, ;5.0,5.0

5.0,5.0 ;

226

1

3423

12,1

43211

Goal:

Page 9: BOMD Input

Method of Propagation 2 • Predictor Corrector : repeated Euler

threshold if stop

,,2

1

...

,,2

1

,,2

1

,

1

11

1

1

11

1

2

1

3

1

1

1

1

2

1

1

1

m

n

m

n

n

m

nnnn

m

n

nnnnnn

nnnnnn

nnnn

xx

ttxftxfxx

ttxftxfxx

ttxftxfxx

ttxfxx

Page 10: BOMD Input

Method of Propagation 3 • Symplectic Integrator: special integrator for

classical mechanics made to satisfy Hamilton’s Equation

Second order Symplectic assume H=T(p)+V(q)

p

H

dt

dq

q

H

dt

dp

;

t

q

qVpp

tp

pTqq

tq

qVptppp

nnn

nnn

nnnnn

15.01

5.01

5.0

5.0

5.05.0

Page 11: BOMD Input

Intermolecular Interaction: Super Molecule Approximation

Page 12: BOMD Input

Super Molecule Approximation To obtain the interaction between two waters perform calculation of two waters

Two things to be careful

• Size Consistency

• Basis set super position erro

Page 13: BOMD Input

Size Consistancy • Consider H2…H2 with CISD infinite far away

result for H2…H2 is not equal to 2 H2!!

H2A H2B H2A H2B

H2A H2B

Two electron excitation ;

H2A H2A

Two electron excitation

Two electron excitation of two H2 has four electron excitation in H2…H2

H2A H2B

Page 14: BOMD Input

Size Consistent Methods

• MP2

• CCSD

0210220110201

0

2

1

exp 21

DTTDTTDTTDTDT

DCCSDTT

Pople et al. have defined an empirical estimation of the four electron excitation contribution MRSDCI had defined +Q so for bond dissociation and potential energy surface calculation people use MRSDCI+Q to approximately take care of the size consistancy problem

Page 15: BOMD Input

Basis Set Super Position Error

• When calculating the energy of a supermolecule we use the basis set of Molecule A and Molecule B together, when we calculate the separated products we calculate molecule A with basis of A, molecule B with basis of B

VS

Page 16: BOMD Input

Counter Poise Correction • Boys Lanbardi method: use ghost atoms (no

charge just position to put basis)and put the basis for the respective partner in the energy calculation for molecule A and B

VS

BSSE big for small basis sets

Page 17: BOMD Input

Gaussian CP Input

Page 18: BOMD Input

G09 CP output 1

Page 19: BOMD Input

G09 CP output2

Page 20: BOMD Input

G09 CP output3

Page 21: BOMD Input

G09 CP output4

Page 22: BOMD Input

G09 CP Output 5

Page 23: BOMD Input

G09 CP output 6

Page 24: BOMD Input

Optimized Geometry CP

W/O CP with CP

Page 25: BOMD Input

Excited Electronic States Calculation

Page 26: BOMD Input

Method for Excited States

• Use more than one slater determinant • CISD: Configuration Interaction Singles and Doubles

• CCSD: Coupled Cluster Singles and Doubles

• MCSCF: Multiconfigurational Self Consistent Field

• MR-CISD: Multireference CISD

• CAS MP2 • MP2,3,4: Mollar Plesset perturbation theory

• Equation of Motion CCSD

• Time Dependent DFT