34
1 Prof. Dr. Nizamettin AYDIN [email protected] [email protected] http://www.yildiz.edu.tr/~naydin Biomedical Instrumentation

BmE_05

Embed Size (px)

Citation preview

Page 1: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 1/34

1

Prof. Dr. Nizamettin AYDIN

[email protected] [email protected] 

http://www.yildiz.edu.tr/~naydin

Biomedical Instrumentation

Page 2: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 2/34

Amplifiers and Signal Processing

Page 3: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 3/34

Applications of Operational Amplifier

In Biological Signals and Systems

• The three major operations done on biologicalsignals using Op-Amp:

 – Amplifications and Attenuations – DC offsetting:

• add or subtract a DC

 – Filtering:

• Shape signal’s frequency content 

3

Page 4: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 4/34

Ideal Op-Amp

• Most bioelectric signals are small and require amplifications

Op-amp equivalent circuit: 

The two inputs are  1 and   2. A differential voltage between them causes

current flow through the differential resistance Rd. The differential voltage

is multiplied by A, the gain of the op amp, to generate the output-voltage

source. Any current flowing to the output terminal vo must pass through the

output resistance Ro.4

Page 5: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 5/34

Inside the Op-Amp (IC-chip)

20 transistors

11 resistors

1 capacitor

5

Page 6: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 6/34

Ideal Characteristics

•  A = (gain is infinity)

• V o = 0, when v1 = v2 (no offset voltage)

•  Rd = (input impedance is infinity)

•  Ro = 0 (output impedance is zero)

• Bandwidth = (no frequency response limitations) and no

phase shift

6

Page 7: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 7/34

Two Basic Rules

• Rule 1

 –  When the op-amp output is in its linear range, the two input terminalsare at the same voltage.

• Rule 2

 –  No current flows into or out of either input terminal of the op amp.

7

Page 8: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 8/34

Inverting Amplifier

(a) An inverting amplified. Current flowing through the inputresistor Ri also flows through the feedback resistor Rf .

(b) The input-output plot shows a slope of - Rf  /  Ri in the central

portion, but the output saturates at about±13 V.

8

 Ri i

 o

 Rf 

(a) 

10 V 

10 V 

(b) 

 i

 o

Slope = - Rf  /  Ri

-10 V 

-10 V 

i

 f 

i

oi

i

 f 

o R

 R

v

vGv

 R

 Rv --

Page 9: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 9/34

Summing Amplifier

9

 

  

 -

2

2

1

1

 R

v

 R

v Rv  f o

1

 o

 R2

 R1 Rf 

2

Page 10: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 10/34

Example 3.1

• The output of a biopotential preamplifier thatmeasures the electro-oculogram is an undesired

dc voltage of ±5 V due to electrode half-cell

potentials, with a desired signal of ±1 V

superimposed. Design a circuit that will

balance the dc voltage to zero and provide a

gain of -10 for the desired signal without

saturating the op amp.

10

Page 11: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 11/34

Answer 3.1

• We assume that vb, the balancing voltage at vi=5 V. For vo=0,

the current through R f  is zero. Therefore the sum of the currents

through Ri and Rb, is zero.

11

i

v b 

 i

 o

 o

+15V 

+10 

0 Time 

 i +  b /2

-10 

(a)  (b) 

5 k W

-15 V 

 Rb

20 k W

 Ri

10 k W

 Rf 

100 k W

   V  o   l   t  a  g  e ,   V

 

W--

-

44

1025

)10(100

i

bi

bb

b

i

o

v

v R R

 R

v

 R

v

Page 12: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 12/34

Follower ( buffer)

• Used as a buffer, to prevent a high source resistance

from being loaded down by a low-resistance load. In

another word it prevents drawing current from the

source.

12

 o i  + 

1 Gvv io

Page 13: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 13/34

Noninverting Amplifier

13

 o

10 V 

10 V 

 i

Slope = ( Rf + Ri )/  Ri

-10 V 

-10 V 

 Rf 

 o i

 Ri

 

  

  i

 f 

i

i f 

i

i

i f 

o R

 R

 R

 R RGv

 R

 R Rv 1

Page 14: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 14/34

Differential Amplifiers

• Differential Gain G d  

• Common Mode Gain G c –  For ideal op amp if the inputs are equal

then the output = 0, and the Gc  = 0.

 –  No differential amplifier perfectly rejects

the common-mode voltage.

• Common-mode rejection ratio CMMR 

 –  Typical values range from 100 to 10,000

• Disadvantage of one-op-amp differential amplifier is its low

input resistance

14

3

4

34 R

 R

vv

vG o

d  -

v3

v4

)( 34

3

4 vv R

 Rvo -

c

GGCMRR

Page 15: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 15/34

Instrumentation Amplifiers

Differential Mode Gain

Advantages: High input impedance, High CMRR, Variable gain

15

1

12

21

43

121

21243

2

)(

 R

 R R

vv

vvG

iRvv

 R R Rivv

-

-

-

-

Page 16: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 16/34

Comparator – No Hysteresis

 o

 i ref 

10 V 

-10 V 

-10 V 

v2

+15

-15

 i

 o

 R1

 R1

 R2

 ref 

If (vi+vref ) > 0 then vo = -13 V else vo = +13 V

 R1 will prevent overdriving the op-amp

v1 > v 2, v o = -13 V

v1 < v 2, v o = +13 V

Page 17: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 17/34

Comparator – With Hysteresis

• Reduces multiple transitions due to mV noise levels

by moving the threshold value after each transition.

Width of the Hysteresis = 4VR3

17

 i

 o

 R1

 R1

 R2

 R3

 ref 

 o

 i-  ref 

10 V 

-10 V 

With hysteresis 

-10 V  10 V 

Page 18: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 18/34

Rectifier

• Full-wave precision rectifier: 

 –  For  i > 0, D2 and D3 conduct, whereas

D1 and D4 are reverse-biased.Noninverting amplifier at the top is active

18

10 V 

(b) 

-10 V 

 o 

 i

-10 V  10 V 

(a) 

 D2 

v o 

 i 

-

 xR  (1-x)R 

-

(a) 

 D3

 R 

 R 

 i

 D2 D1

 D4

 xR  (1- x) R 

 x

vv io

Page 19: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 19/34

Rectifier

• Full-wave precision rectifier: 

 –  For  i < 0,

D1 and D4 conduct, whereas D2 and D3 arereverse-biased.

Inverting amplifier at the bottom is active 

19

10 V 

(b) 

-10 V 

 o 

 i

-10 V  10 V -

(a) 

 D3

 R 

 R 

 i

 D2 D1

 D4

 xR  (1- x) R 

 x

vv io

(b) 

 D4

v o  i 

-

 xRi  R 

Page 20: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 20/34

One-Op-Amp Full Wave Rectifier

• For  i < 0, the circuit behaves like the inverting

amplifier rectifier with a gain of +0.5. For  i > 0, theop amp disconnects and the passive resistor chain

yields a gain of +0.5.

20

(c) 

 D 

v o 

 i 

-

 Ri = 2 k W  Rf = 1 k W

 RL = 3 k W

Page 21: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 21/34

Logarithmic Amplifiers

• Uses of Log Amplifier

 –  Multiply and divide variables –  Raise variable to a power

 –  Compress large dynamic range into small ones

 –  Linearize the output of devices

(a) A logarithmic amplifier makes use of the fact that a transistor's V BE is

related to the logarithm of its collector current.

For range of Ic equal 10-7 to 10-2 and the range of vo is -.36 to -0.66 V.

21

(a) 

 Rf 

 I c R f   /9

 o 

 Ri i

 

 

 

 

-13

10

log06.0

i

io

 R

vv

 

  

 

S

C  BE 

 I  I V  log06.0

Page 22: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 22/34

Logarithmic Amplifiers

(a) With the switch thrown in the alternate position, the

circuit gain is increased by 10. (b) Input-outputcharacteristics show that the logarithmic relation is

obtained for only one polarity; 1 and 10 gains are

indicated.

22

(b) 

10 V 

-10 V 

v o 

 i 

-10 V 

1

10

10 V 

(a) 

 Rf 

 I c R f   /9

 o 

 Ri i

VBE

VBE

9VBE

Page 23: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 23/34

Integrators

23

 f  f 

c

i

 f 

i

o

C  R f 

 R

 R

v

v

  2

1

-

for f < f  c 

C  R j R R jV 

 jV 

C  R R j R

 R

 jV 

 jV 

 Z 

 Z 

 jV 

 jV 

vdt vC  Rv

i

 f 

ii

o

i f i

 f 

i

o

i

 f 

i

o

ici f i

o

  

 

  

 

 

 

-

-

-

-

1

)(

)(

1 1

0

A large resistor Rf  is used to prevent saturation

Page 24: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 24/34

 

• A three-mode integrator 

With S1 open and S2 closed, the dc circuit behaves as an inverting amplifier.

Thus  o =  ic and  o can be set to any desired initial conduction. With S1 

closed and S2 open, the circuit integrates. With both switches open, the

circuit holds  o constant, making possible a leisurely readout.

24

Page 25: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 25/34

Differentiators

• A differentiator

 –  The dashed lines indicate that a small capacitor must

usually be added across the feedback resistor to prevent

oscillation.

25

 RC  j jV 

 jV  Z 

 Z 

 jV 

 jV 

dt 

dv RC v

i

o

i

 f 

i

o

io

 

 

 

 

 

-

-

-

)(

)()(

)(

Page 26: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 26/34

Active Filters- Low-Pass Filter

• A low-pass filter attenuates high frequencies

26

f  f i

 f 

i

o

C  R j R

 R

 jV 

 jV 

  

 

-

1

1 GGain

|G|

freq f c = 1/2RiCf 

Rf  /Ri

0.707 Rf  /Ri

-  Ri

 Rf 

(a) 

 i

 o

Page 27: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 27/34

Active Filters (High-Pass Filter)

• A high-pass filter attenuates low frequencies

and blocks dc.

27

C i

- Ri

 i o

(b) 

 Rf  ii

ii

i

 f 

i

o

C  R j

C  R j

 R

 R

 jV 

 jV 

 

 

 

 

-

1 GGain

|G|

freq f c = 1/2RiCf 

Rf  /Ri

0.707 Rf  /Ri

A i i ( i )

Page 28: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 28/34

Active Filters (Band-Pass Filter)

• A bandpass filter attenuates both low and high

frequencies.

28

ii f  f 

i f 

i

o

C  R jC  R j

C  R j

 jV 

 jV 

  

 

 

 

-

11

|G|

freq f 

cL= 1/2R

iC

i

Rf  /Ri

0.707 Rf  /Ri

 f cH

= 1/2Rf C

- i

 o 

(c) 

 Rf C i  Ri

C f 

Page 29: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 29/34

Frequency Response of op-amp and Amplifier

• Open-Loop Gain

• Compensation

• Closed-Loop Gain

• Loop Gain

• Gain Bandwidth Product• Slew Rate

29

I d O R i

Page 30: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 30/34

Input and Output Resistance

30

i

iai R A

i

v R )1(

+

-

 Rdii 

 Ro

 RL C L

io  A d 

 d  o

 i

+

-

1

 A

 R

i

v R o

o

oao

Typical value of Rd = 2 to 20 MW  Typical value of Ro = 40 W 

Phase Modulator for Linear variable differential

Page 31: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 31/34

Phase Modulator for Linear variable differentialtransformer LVDT

31

+

-

+

-

Phase Modulator for Linear variable differential

Page 32: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 32/34

Phase Modulator for Linear variable differentialtransformer LVDT

32

+

-

+

-

Ph S iti D d l t

Page 33: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 33/34

Phase-Sensitive Demodulator

33

Used in many medicalinstruments for signal detection,

averaging, and Noise rejection

Th Ri D d l t

Page 34: BmE_05

8/4/2019 BmE_05

http://slidepdf.com/reader/full/bme05 34/34

The Ring Demodulator

• If vc is positive then D1 and D2 are forward-biased and vA = vB. So vo = vDB

• If vc is negative then D3 and D4 are forward-biased and vA = vc. So vo = vDC