51
BMB 170 Lecture 11 Nucleic Acids, Oct. 31 DNA Transcriptional regulators: repressors, activators Enzymes to cut, modify or replicate DNA Histones RNA Large complexes (Ribosome, SRP, spliceosome) tRNA synthetases Translation factors Types of proteins that bind to Nucleic Acids ‘Structures of the CRISPR genome integraDon complex’ Wright et al (Doudna Lab) Science (2017) 357:1113

BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

BMB170Lecture11NucleicAcids,Oct.31

• DNA– Transcriptional regulators:

repressors, activators– Enzymes to cut, modify or replicate

DNA– Histones

• RNA– Large complexes (Ribosome, SRP,

spliceosome)– tRNA synthetases– Translation factors

Types of proteins that bind to Nucleic Acids

‘StructuresoftheCRISPRgenomeintegraDoncomplex’Wrightetal(DoudnaLab)Science(2017)357:1113

Page 2: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Some classes of DNA binding transcription factors

• HTH (helix-turn-helix) proteins• Homeodomains• Steroid receptors• Zinc finger proteins• Leucine zipper proteins• Helix-loop-helix proteins• β-sheet motifs

• Each motif involves simple secondary structure that is complementary to B-DNA. Side chain contacts allow same motif to be used for recognizing different DNA sequences.

Page 3: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

WhatsecondarystructuresofproteinsarecomplementarytoB-DNA?

• MostproteinsdecodesequenceinformaDonfromDNAmajorgroove.• α-helixfitsintomajorgrooveofB-DNA• Two-strandedanDparallelβ-sheetcanfitintominorgrooveofB-DNA(Church

etalPNAS(1977)74:1458-)

5.8Å

13.6Å

6.7Å

9.6Å

Page 4: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Helix-turn-helix motifs in DNA binding proteins

• Conserved recognition motif

• First seen λ cro, E. coli CAP, λ repressor.

• Sequence comparisons suggested HTH motif occurs in large family of prokaryotic DNA binding proteins (find highly conserved glycine and several hydrophobics).

• HTH occurs in different structural environments

Page 5: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Repressors control lytic vs lysogeny decision in phage

• Phage two parts lifecycle– (1) Prophage

• phage genome incorporated• want lytic genes off

– (2) Lytic • turn off repressor of lytic genes• turn on lytic genes

• Prophage state (as diagrammed)– cI (Clear 1 - λ repressor) binds to OR1 and OR2– turns off PR by blocking RNA pol from transcribing lytic genes (e.g., cro)– cI binding turns on PRM to make more cI (cI is both a repressor and an activator).

• Lytic state– DNA damage leads to cI cleavage– cro (control of repressor operator) binds to OR3, turns off PRM– turns on PR to transcribe lytic genes.

• cro and cI bind to same operators but with differing affinities:– cI: OR1 > OR2 > OR3– cro: OR3 > OR2 > OR1

~17 bp operators are nearly palindromic

Prophage state

cI

Page 6: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Structure of λ cro protein from phage lFirst structure of a DNA binding protein (Matthews lab, 1981) (5cro)

• 66 aa long• Binds as dimer to 17 bp

pseudo-symmetric operator

• Dimer made by β-sheets• HTH motif is 2nd and 3rd α-helices

• Model for λcro/DNA – two copies of the

recognition helix separated by 34 Å

– same distance as separates two major grooves of B-DNA.

~34Å

Anderson et al. Nature (1981) 290:754-8

α1α2 α3

Page 7: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Structure of DNA-binding domain of cI (λ repressor) (1lrp)

• cI has two domains– N-terminal 92 res DNA binding– C-terminal stabilizes dimer

• DNA-binding domain structure– HTH motif is helices 2 and 3. – Dimer contact is mediated by helix 5

• Recognition helices separated by ~34 Å (λ cro) • N-terminal arms reach around to back side of DNA to

make contacts with major groove.

Pabo and Lewis, early 80’s. C Pabo & M Lewis Nature (1982) 298:443-7

2

3

2

3

Page 8: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

cI (λ repressor) bound to 20-mer oligo (1lmb)

• Protein dimer symmetry axis coincides with approximate two-fold axis of DNA oligo.

• Recognition helices on adjacent major grooves.

• N-terminal arms contact major grooves on back of DNA.

• DNA slightly distorted from B-DNA.

Beamer & Pabo JMB (1992) 227:177-96.

HTH

Page 9: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Structural conservation of HTH motif

• Cα’s superimpose within 0.7 to 1.0 Å rmsd

• 6/21 aa conserved in related sequences

• 4 residues make hydrophobic contacts between helices, preserving their orientation

• Conserved Gly important for bend between helices

1st helix

2nd helix(recognition helix)

Page 10: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Phage 434

• Similar to λ phage• Structures of

repressor and Cro– Fold overall similar– Similar DNA binding

modes• Bends DNA

434 Cro (3cro)

434 repressor (2or1)

Harrison lab:Aggarwal et al Science (1988) 242:899-907 Wolberger et al Nature (1988) 335:789-95

HTH HTH

Page 11: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

CAP/cAMP/DNA structure(1cgp)

Steitz lab: McKay & Steitz Nature (1981) 290:744-9Schultz et al Science (1991) 253:1001-7

• cAMP receptor protein• Activates at over 20

promoters• w/o DNA predicted to

bind left-handed DNA • Bends DNA by 90°

CAP/cAMP structure

Page 12: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Comparison of l repressor and 434 repressor/DNA complexes

• 1st residue of 1st helix (Gln) – two H-bonds with DNA backbone– Aligns +helix dipole of 1st helix with phosphates.

• 1st residue of 2nd helix (Gln)– makes bidentate H-bonds to adenine – Gln is specific for A of A-T base pair

• H-bonds between Glns at beginning of each helix– Stabilizes geometry and dipole interactions– No code - simple mutagenesis schemes to change

specificity won’t work• Asn at end of recognition helix H-bonds to same

Pi oxygen contacted by first Gln

Harrison lab: Pabo et al Science (1990) 247: 1210-3

Comparison of λ repressor and 434 repressor/DNA complexes

Page 13: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Trp repressor

• TrpR/W (1tro) white/blue-red – turns off W synthesis– Trp moves HTH motif (D and E)

• Apo TrpR (3wrp) shaded/gray– HTH orientated incorrectly– apo TrpR can’t bind B-DNA Sigler lab: Zhang et al (1987) Nature 327: 591-597

Page 14: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

TrpR/DNA complex (2.4 Å)

• Trp R/DNA (19-mer oligo)• Water mediated H-bonds• 24 direct, 6 solvent-mediated

H bonds to Pi backbone• Sequence recognized

indirectly through effects on geometry of Pi backbone

• No sequence specific vdw contacts between non-polar sidechains and bases

• Crystals grown in 35% dimethylpentanediol (1 year)

B DNATrp R-bound DNA

Sidechains that make directH-bonds to the operator

Sigler Lab: Otwinowski et al (1988) Nature 335: 321-9 (1tro)

Page 15: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Anon-specificcomplex?

Staacke et al (1990) How Trp repressor binds to its operator. EMBO Journal 9: 1963-7

• TrpR binds three operators (trpR operon, aroH operon, operon for Trp synthesis)

• Consensus binding sequence unusually large (protection experiments)

• Crystal structure of TrpR and oligo with consensus sequence of trp operators about a central axis of symmetry

• Propose that operator binds two TrpR dimers on full sequence

Page 16: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Two TrpR dimers (1trr)

• Crystal structure with the larger oligo

• Binds a dimer• Confirms Sigler model

of water mediated contacts to DNA

Lawson & Carey (1993) Nature 366:178-82

Page 17: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Phillips Lab: Rafferty et al (1989) Nature 341:705-710

Met Repressor (1cmc)

SAM

• Methionine is precursor to S-adenosylmethionine (SAM)• Binds SAM• Solved structure +/- SAM• Dimer of two highly intertwined monomers. No HTH motif. • No change in structure upon SAM binding

C

C

~35Å

Page 18: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Somers & Phillips (1992) Nature 359:387-93

Met repressor/DNA complex (1cma)

• A two-stranded β-sheet inserts in major groove

• Anti-parallel β-ribbon has two-fold axis and twist curvature is comparable to that of DNA

Page 19: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Homeodomains - eukaryotic HTH motifs

recognitionhelix

recognitionhelix

1st helixof HTH motif

1st helixof HTH motif

Branden and Tooze, Fig. 9.9

• First discovered in Drosophila proteins that regulate development• Bind “homeoboxes” • Large family of proteins that regulate transcription• Homeodomains are stably folded domains rather than motifs• Bind to AT-rich regions• Primary sequences highly conserved• Sequence comparisons suggested HTH motif -- verified by structures• N-terminus forms arm that inserts into minor groove

Page 20: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Q50

I47

N51

R3

R5

Engrailed/DNA structure (1hdd)

• engrailed involved in Drosophila development

• HTH motif: superimposes on prokaryotic repressors to 0.84 Å rmsd

• N-terminal arm (residues 3-9) fits in minor groove

• Three helices– 1&2 are anti-parallel, no DNA contacts– Helix 3 ~90°to first two, fits major groove Pabo lab: Kissinger et al (1990) Cell 63: 579-90

Page 21: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Combinatorial control of gene regulation• Homeodomain transcription factors

– low DNA binding specificity – Bind in combination with factors– increases binding affinity & specificity

• Combinatorial control–modular combination of a limited number of factors– control expression of a variety of genes

• Example: Mating type in yeast–MATα2 (a homeodomain-containing protein) binds to DNA

together with either a1 or MCM1– Diploid cells: MATα2 + a1 represses haploid-specific genes

Haploid cells : MATα2 + MCM1 represses diploid-specific genes

– Crystal structures of MATα2/DNA, MATα2/ a1/DNA, and MATα2/MCM1/DNA

Page 22: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Matα2/DNA structure (1apl)Pabo lab: Wolberger et al Cell (1991) 67:517-28

• Homeodomain of MATα2 bound to DNA– Similar to engrailed/

DNA complex– N-terminal arm

interactions with minor groove.

• Residues C-terminal to recognition helix are disordered.

Page 23: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

• a1 is a homeodomain• C-terminal tail of MATα2 – disordered in MATα2/DNA – ordered (gray) in MATα2/

a1/DNA – Packs against a1 as an

amphipathic helix• DNA is bent

MATα2/a1/DNA structure

MATα2

a1

Wolberger lab: Li et al (1995) Science 270:262-9 (1YRN)

Page 24: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Matα2/MCM1 &MADS box

• Haploid cells, Matα2 interacts with MCM1 to repress a-specific genes

• MCM1: 286 residues – N-terminal 80 aa domain similar to

mammalian Serum Response Factor – specifies DNA binding, dimerization,

and interaction with accessory factors.

• Contains a SRF-like domain is 56 aa MADS-box– shared by mammalian myocyte

enhancer factor 2 (MEF2) transcription factors

– plant homeotic genes Agamous and Deficiens

Serum Response Factor (1srs)Pellegrini, Tan & Richmond (1995) Nature 376:490-8

Page 25: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Matα2/MCM1/DNA structure

• Binding of MATα2 to DNA– MCM1 increases affinity 50-500 fold– spacing must be correct.

• Cooperative binding – interaction between MCM1 and flexible linker region of

MATα2.• Crystal structure 2.25 Å

– homeodomain from MATα2– MADS-box transcription factor MCM1– DNA

Tan & Richmond Nature (1998) 391: 660-6

Page 26: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

α2 (cis)

α2 (trans)

MCM1 (cis)

MCM1 (trans)

STE6 DNA

Matα2/MCM1/DNA structure (1mnm)

•MCM1 is dimeric (similar to SRF/DNA crystal structure)•Long helices of MCM1 nearly parallel to minor groove -- they extend into major groove.•N-terminal arm of MCM1 passes over DNA backbone.•N-terminal arm of MATα2 contacts minor groove, but more residues are ordered.•MATα2(cis) - ordered residues make strands S1 and S2, helps bend DNA

Tan & Richmond Nature (1998) 391: 660-6

Page 27: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Steroidandthyroidhormonesuperfamily• Steroidandthyroidhormonesacttocoordinatecomplexeventsindevelopment– e.g.removethyroidfromtadpole

• LigandresponsivetranscripDonfactors– Hormonesbindtoreceptorsinsidecell– ReceptorsthenenternucleustoacDvategenes

• ReceptorsbindtoHormoneResponsiveElements(HREs)– 20bpcis-acDngsequencesrequiredforhormonalregulaDon– CanputHREinfrontofothergenestoregulateinresponsetohormone

• HREsareposiDonandorientaDonindependent• HREsaredyadsymmetric-dimers

Page 28: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

• A protein that interacts with hormones– e.g. sex hormones, glucocorticoids,

thyroid hormone– binds to an enhancer to stimulate

transcription• Three typess

– Type I - glucocorticoid• reside in cytoplasm• migrates to nucleus when bound to

hormone– Type II - thyroid hormone

• reside in nucleus• binding in the absence of hormone

can repress transcription; binding with hormone stimulates transcription

– Type III - orphan receptors • ligand has not been identified

Nuclear Receptors

Page 29: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Steroid/thyroid receptors have separate DNA-binding and hormone-binding domains

Results of many biochemical studies showed these receptors have three domains: one involved in activation,one for DNA binding, one for hormone binding.

We’ll look at structureof DNA-binding regiononly.

Page 30: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

• DNA binding domains have basic residues and conserved Cys

• Proposed that Cys residues coordinate zinc. Find two zinc- binding modules in each DNA-binding region. All DNA- binding regions have two zinc-binding modules.

• Position of Cys residues similar to TFIIA motifs, but no histidines (see next lecture)

DNA binding domains of steroid/thyroid receptors

Page 31: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Crystal structure of glucocorticoid receptor/DNA complex

• Crystallized with oligo with two hexameric half sites.• Half sites normally separated by 3 BP (pseudo two-

fold symmetry), but their oligo has 4 BP separation (true two-fold symmetry).

• One specific, one non-specific complex.Sigler lab: Luisi et al (1991) Nature 352: 497-505

Page 32: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

• GR DNA-binding domains – bind as dimer– each chain has two Zn modules.

• Zn modules fold together as part of a larger globular domain

• Modules are not independent structural units

• Dimerization interactions force one subunit to interact with non-cognate sequence.

Glucocorticoid receptor/DNA complex (1r4r)

Sigler lab: Luisi et al (1991) Nature 352: 497-505

Page 33: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Glucocorticoid receptor/DNA complex (1r4r)

Sigler lab: Luisi et al (1991) Nature 352: 497-505

The two zinc-containing modules differstructurally and functionally.

Module 1: Module 2: Contains recognition helix. Contacts phosphates, dimerizes with partner.

Requires zinc for folding and binding DNA, but verydifferent from TFIIIA-type zinc fingers.

Page 34: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

TFIIIA-style zinc fingers• Transcription factor IIIA (TFIIIA)

– Prototype Zinc finger protein– from Xenopus oocytes– required for accurate transcription of 5S RNA genes by RNA pol III– Purified protein binds Zn– Zn necessary for specific DNA binding

• cDNA sequence had 9 tandem sequences:Y F X C X2-4 C X3 F X5 L X2 H X3-4 H X2-6 – Called these sequences “fingers”– Each finger is structurally independent domain (protease digestions)– Each finger encoded on a separate exon

• 30 aa synthetic peptides bind zinc• Peptides are unfolded unless zinc added (CD experiments)

Page 35: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Some TFIIIA-style zinc finger proteins• Yeast ADR1 (alcohol dehydrogenase regulation) -- 2 fingers• Human SP1 (general transcription factor regulating cellular

and viral genes)• Krüppel, Hunchback (both involved in control of Drosophila

development• ZFY, ZFX (testis determining factor, found on X and Y

chromosomes)• Xenopus Xfin (37 fingers!)• 897 human proteins have at least one C2H2 Zn finger for a

total of 6890 C2H2 domains (~8 fingers/protein)(Ali Mortazavi, 2004 BMB 170 project)

Page 36: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Model of zinc finger (J. Berg)

Conserved residues circled

Model of zinc finger proposed by Jeremy Berg

J. Berg PNAS (1988) 85:99-102

• Berg Model– Binds Zn through invariant Cys and

His residues (EXAFS)– Two Cys hypothesized to interact

with Zn in same way as seen in rubredoxin and ATCase (a β-hairpin)

– Two His hypothesized to interact with zinc like His residues in hemerythrin and thermolysin (α-helix)

• Structure confirmed overall Berg model• “This may constitute the first time that a

globular protein structure has been correctly predicted from its amino acid sequence (depending on what one means by ‘correct’, ‘predict’, and ‘first’).” Tom Steitz Q Rev Biophys (1990) 23:205-80

Page 37: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Zinc fingers bind as modules to adjacent sites on DNA

Wright lab: Lee et al Science (1989) 245:635-7 (1znf)

• Each finger interacts with 3 bp (e.g., Sp1 site is 9-10 bp for binding three fingers)

• Methylation interference suggested major groove binding

• NMR structure– 31st Xfin finger– Exposed face of helix showed

basic residues and polar side chains

Page 38: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

First x-ray structure: Three fingers from Zif268 (1zaa)

• Each finger contacts 3 bp in major groove.• Fingers are similar (0.45 Å to 0.87 Å rmsd).• α-helix

– N-terminus points into major groove– helix axis not aligned with major groove

• β-strands– 1st - no contacts with DNA– 2nd - contacts phosphate backbone

Pavletich & Pabo Science (1991) 252: 809-816

Page 39: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

First X-ray structure: Three fingers from Zif268 (1zaa)

• Arg reads the guanines• Majority of interactions to one strand (not

always the case)

Pavletich & Pabo Science (1991) 252: 809-816.

Page 40: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

5-finger complex from hGLI oncogene (1gli)

Pavletich & Pabo Science (1993) 261: 1701-7

Page 41: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Leucine zippers

• First discovered in 30 aa segment of C/EBP (enhancer binding protein)

• Found Leu every 7 residues over 8 helical turns• 1st model (Landschultsz et al Science (1988)

240:1759-64) – Proposed both parallel and anti-parallel– Favored antiparallel coiled coil

• align helical dipoles favorably• allows leucines to interlock to form a “zipper”.

Page 42: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

bZIP - Leucine zippers

• Leu region is parallel coiled coil– mutational & x-linking studies– Dimerization motif

• Basic region interacts with DNA• Can form hetero and homo dimers

– allows combinatorial action of gene regulatory proteins– doubles DNA contact area (squares affinity constant)

• Leucine zipper not really a “zipper”, but a parallel coiled coil– helices distorted (repeat is 3.5 residues/turn instead of 3.6)– integral repeat of Leu every 7 residues along helix

• Scissors grip model for bZIP proteins– zipper must be contiguous with basic region– basic region contacts DNA at bifurcation point of two zippered

helices

Page 43: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Structure of GCN4, a bZIP protein (1YSA)

• 56 aa bZIP element of GCN4 bound to 20 bp oligo

• single continuous α-helix of 52 residues

• C-terminal ends form coiled-coil• dimerization region ~perpendicular

to DNA• N-terminal basic-region splays

apart

Harrison lab, Ellenberger et al., 1992, Cell 71: 1223-1237

Page 44: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Helix-loop-helix proteins, another dimerization motif

• HLH portion responsible for dimerization• N-terminal basic region binds DNA• Family includes some proteins with no basic region

– no DNA binding– act as negative regulators of HLH proteins with basic regions.

• Myc oncoproteins have basic and HLH motifs followed by Leucine zippers (b/HLH/Z)

Page 45: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

MyoD bHLH Domain (1mdy)

• Transcriptional activators in muscle cells• Binds to consensus CANNTG• Structure of dimer is a parallel, four helix bundle

Pabo lab, Ma et al (1994) Cell 77:451

Basic region

Basic region

Page 46: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Structure of Max, a b/HLH/Z protein, bound to DNA (1an2)

• Max is a b/HLH/Z protein that heterodimerizes with Myc oncoproteins• Association with Myc in vivo is required for malignant transformation• First bHLH fold

22 bp oligoN

C

Burley lab, Ferre-D’Amare et al (1993) Nature 363:38-45

Leu Zipper

HLH

basic

Page 47: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Nuclear factor kappa-B (NFκB)• First identified as DNA binding protein that

binds to site in Ig κ light chain enhancer.• Prototype of family of transcription factors

that have 300 aa Rel homology region (RHR)

• Members of RHR family– Homo or heterodimers– bind to κB sites in enhancer regions of

genes involved in cellular defense mechanisms and differentiation.

• RHR is at N-terminus responsible for dimerization, DNA binding, nuclear localization

• Highly variable C-terminal domains are responsible for transactivation

Page 48: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

Crystal structure of RHR from NFκB p50 homodimer bound to idealized palindromic κB target

• “Butterfly” with protein domains as wings attached to cylindrical body of DNA• Contacts with DNA formed by loops between β-strands• No helical or sheet structure at recognition surface

Sigler lab (1nfk) Ghosh et al Nature (1995) 373: 303-10; Harrison lab (1svc) Müller et al, ibid, 311-7

Note protein wraps around DNA to make contacts all along major groove

Page 49: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

IκBα/NFκB inhibited complex

• IκBα contains ankyrin repeats

• IκBα binds to the NLS preventing transport

• Blocks DNA binding• p50/p65

transcription factor

p65

IκBα

p50

Harrison lab, Jacobs & Harrison (1998) Cell 95:749-58 (1nfi)

Page 50: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

NFAT/Fos-Jun/DNA co-crystal structure

• NFAT proteins are cytoplasmic in resting T cells• TCR is stimulated

– increases [Ca2+]– calcineurin (a phosphatase) dephosphorylates sites on NFAT

• Dephosphorylated NFAT imported into nucleus • Full response at NFAT sites require

– activation of members of AP-1 transcription factor family– AP-1 site just downstream of NFAT site in the promoters of IL-2 and

other cytokines (T-cell proliferation)• The immunosuppressive drugs cyclosporin A and FK506

are calcineurin inhibitors preventing import of NFAT into nucleus

Harrison lab: Chen et al (1998) Nature 392: 42-8

Page 51: BMB 170 Lecture 11 Nucleic Acids, Oct. 31saf.bio.caltech.edu/bi170/BMB170_2017_LECTURE11.pdf · • HTH (helix-turn-helix) proteins • Homeodomains • Steroid receptors • Zinc

NFAT/Fos-Jun/DNA

• AP-1 heterodimer - Fos and Jun (both bZIP proteins)• NFAT (nuclear factor of activated T cells) has RHR DNA-binding region• Structure bZIP parts of AP-1 and RHR of NFAT bound to DNA fragment

from Interleukin-2 promoter• NFAT binds as a monomer, other RHR members (e.g., NFκB) are dimers

Harrison lab (1a02) Chen et al (1998) Nature 392: 42-8.

FosJun

NFAT