138
BIOLOGIA 1/2019

BIOLOGIA - Babeș-Bolyai University · BIOLOGIA 12TH CONFERENCE ON HALOPHILIC MICROORGANISMS “HALOPHILES 2019” 24‐28 JUNE CLUJ‐NAPOCA BOOK OF ABSTRACTS 1 / 2019 January –

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • BIOLOGIA1/2019

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAI

    BIOLOGIA

    12THCONFERENCEONHALOPHILICMICROORGANISMS

    “HALOPHILES2019”

    24‐28JUNECLUJ‐NAPOCA

    BOOKOFABSTRACTS

    1/2019January–June

  • SCIENTIFICADVISORYBOARD(ALPHABETICALLIST) 

    Dr.ThorstenAllersUniversityofNottingham,UNITEDKINGDOM

      Prof.JulieA.Maupin‐FurlowUniversityofFlorida,USA

    Dr.JosefaAntónUniversityofAlicante,SPAIN

      Dr.HiroakiMinegishiResearchInstituteofIndustrialTechnology,ToyoUniversity,JAPAN

    Dr.MădălinEnacheInstituteofBiologyBucharest,RomanianAcademy,ROMANIA

      Prof.AharonOrenTheHebrewUniversityofJerusalem,ISRAEL

    Prof.ErwinA.GalinskiInstituteofMicrobiology&Biotechnology,UniversityofBonn,GERMANY

      Dr.RamonRosselló‐MóraGrupdeMicrobiologiaMarinaIMEDEA(CSIC‐UIB),SPAIN

    Dr.JohnE.HallsworthQueen’sUniversity,Belfast,UNITEDKINGDOM

      Prof.AntonioVentosaUniversityofSevilla,SPAIN

    INVITEDSPEAKERS(ALPHABETICALLIST) 

    Prof.BonnieK.BaxterGreatSaltLakeInstitute,WestminsterCollege,USA

      Prof.TerryMcGenity UniversityofEssex,UNITEDKINGDOM

    Dr.KathleenC.BenisonWestVirginiaUniversity,USA

      Dr.MariaS.MuntyanLomonosovMoscowStateUniversity,RUSSIA

    Prof.ErhardBremerUniversityofMarburg,GERMANY

      Prof.MechthildPohlschröderUniversityofPennsylvania,USA

    Prof.RickCavicchioliUniversityofSydney,NewSouthWales,AUSTRALIA

      Prof.AmyK.SchmidDukeUniversity,USA

    COMMITTEES

  • Dr.JocelyneDiRuggieroJohnsHopkinsUniversity,USA

      Prof.FranciscoRodriguez‐ValeraUniversidadMiguelHernandez,SanJuandeAlicante,SPAIN

    Jun.Prof.Dr.SabineFilkerUniversityofKaiserslautern,GERMANY

      Prof.JörgSoppaGoethe‐UniversitätFrankfurtamMain,GERMANY

    Prof.NinaGunde‐CimermanUniversityofLjubljana,SLOVENIA

      Dr.MichailM.YakimovInstituteforCoastalMarineEnvironment,ITALY

    Dr.Hans‐JörgKunteBiologischeMaterialschädigungundReferenzorganismen,GERMANY

     

    ORGANIZINGCOMMITTEE 

    Prof.HoriaL.BanciuBabeș‐BolyaiUniversity

      ValentinRaucaBabeș‐BolyaiUniversity

    DianaF.BogdanBabeș‐BolyaiUniversity

      LecturerDr.KarinaP.BattesBabeș‐BolyaiUniversity

    TiberiuSzöke‐NagyNationalInstituteforResearchandDevelopmentofIsotopicandMolecularTechnologies(NIRDIMT)

      Dr.AndreeaBariczNIRDBS,InstituteofBiologicalResearchCluj‐Napoca

    SebastianA.PoravNationalInstituteforResearchandDevelopmentofIsotopicandMolecularTechnologies(NIRDIMT)

      Prof.BálintMarkóBabeș‐BolyaiUniversity

     

     

    EXECUTIVEEDITORSSTUDIAUBBBIOLOGIA 

    LecturerDr.KarinaP.BattesBabeș‐BolyaiUniversity

      LecturerDr.MirelaCîmpeanBabeș‐BolyaiUniversity

    [email protected]

  • SPONSORS

  •  

    Babeș‐BolyaiUniversityofCluj‐NapocaFacultyofBiologyandGeology‐Babeș‐BolyaiUniversity

    DoctoralSchoolofIntegrativeBiology‐Babeș‐BolyaiUniversityNationalInstituteforResearchandDevelopmentofIsotopicand

    MolecularTechnologies‐INCDTIM(NIRDIMT)Student’sOrganizationforNature

    InstituteofScienceandInnovationforSocietyRomanianSocietyofBioinformatics(RSBI)RomanianSocietyforMicrobiology(SRM)

    SCIENTIFICPARTNERS

  • Monday,24June,201914.00–18.00 REGISTRATION[GrandHotelNapoca,http://hotelnapoca.ro/]18.00–18.30 WelcometoHalophiles201918.30–19.30 OPENINGLECTURE:RickCavicchioli,“Antarctichypersaline

    communities–environmental‘omics’andlaboratorystudies”19.30–21.00 WelcomeDinner[GrandHotelNapoca]

    Tuesday,25June,20198.00‐8.30 REGISTRATION[GrandHotelNapoca]

    SESSION:DIVERSITY&ECOLOGY(I)(CHAIRPERSON:FRANCISCORODRIGUEZ‐VALERA)

    8.30‐9.00 MădălinEnache,“HowsaltedisRomania?”9.00‐9.30 AharonOren,“Whywasn'ttheDeadSearedinthefirsthalfof

    the20thcentury?”9.30‐10.00 BonnieBaxter,“Biogeography,halophiles,andavianmechanical

    carriers”10.00‐10.20 Nikolaos Korovessis, “The ecological importance of solar

    saltworks”10.30‐11.00 COFFEE/TEABREAK

    SESSION:DIVERSITY&ECOLOGY(II)(CHAIRPERSON:MĂDĂLINENACHE)

    11.00‐11.30 JocelyneDiRuggiero,“Halitemicrobiomedynamics”11.30‐12.00 Antonio Ventosa, “Hypersaline environments microbiome:

    soilsversussalterns”12.00‐12.20 NicolettaPerini,“PurpleSpotsonancientparchmentsvsRed

    Heatsonpresent‐dayleathers:theunveiledsecretofthesalt‐curedhides”

    12.20‐12.40 Andrea Cherkouk, “Interaction of uraniumwith halophilicmicroorganisms”

    12.40‐13.00 Noor‐Ul‐HudaGhori,“Uncoveringthemicrobialinteractome:Thesociallifeofextremophiles”

    13.00‐14.00  LUNCH

    PROGRAM

  • SESSION:DIVERSITY&ECOLOGY(III)(CHAIRPERSON:BONNIEBAXTER)

    14.00‐14.30 TerryJ.McGenity,“Lifeinapinchofsalt”14.30‐15.00 FranciscoRodriguez‐Valera,“Marine‐freshwatertransitions

    requireextensivechanges in theproteome.What it takes tolivewithoutsalt”

    15.00‐15.30 Michail M. Yakimov, “Microbial diversity in the deep‐seaanaerobic hypersaline environments with emphasis on theroleofanaerobichaloarchaeainCandScycles”

    15.30‐16.00 COFFEE/TEABREAK

    SESSION:DIVERSITY&ECOLOGY(IV)(CHAIRPERSON:JOSEFAANTÓN)

    16.00‐16.30 KathleenBenison,"Integratinggeologyandmicrobiologytounderstandpreservationofextremophilesinsaltminerals"

    16.30‐17.00 MikeDyall‐Smith, “Haloviruses: thebad,theworseandthesurprising”

    17.00‐17.20 Raeid Abed, “Structural‐functional analysis of extremelyhypersalinemicrobialmatsfromtheArabianPeninsula”

    17.20‐17.40 Fernando Santos, “Metaviromics asks, metaviroproteomicsanswers”

    17.40‐18.00 Sponsorpresentation:IonuțOprea(DextercomSRL),“Microbialcommunityanalysis”

    18.30‐20.30 SOCIALPROGRAM:CLUJ‐NAPOCACITYTOURWednesday,26June,2019

    SESSION:BIOCHEMISTRY&PHYSIOLOGY(I)(CHAIRPERSON:MIKEDYALL‐SMITH)

    8.30‐9.00 MariaS.Muntyan,“Bioenergeticsofhaloalkaliphiles”9.00‐9.30 ErhardBremer,“Theextremolytesectoineandhydroxyectoine:

    import,synthesisandgeneticregulation inresponsetoosmoticstress”

    9.30‐10.00 Hans‐Jörg Kunte, “Effect of ectoine on DNA: Mechanismsofinteractionandprotection”

    10.00‐10.20 LauraCzech,“Synthesis,uptakeandexcretionofectoinesinthealphaproteobacteriaHyphomonasneptuniumandNovosphingobiumsp.LH128”

    10.30‐11.00 COFFEE/TEABREAK

  • SESSION:BIOCHEMISTRY&PHYSIOLOGY(II)(CHAIRPERSON:ERHARDBREMER)

    11.00‐11.30 Mechthild Pohlschröder, “C‐terminal lipid‐anchoring ofHaloferaxvolcaniisurfaceproteins”

    11.30‐12.00 Amy Schmid, “Co‐evolution of transcription and metabolicnetworksinhalophilicarchaea”

    12.00‐12.20 UriGophna,“CRISPR‐Cassystemsinhaloarchaeamorethanjustantiviraldefense?”

    12.20‐12.40 Thomas Thompson, “Quorum sensing: signaling fromhaloarchaeatobacteria”

    12.40‐13.00 Hosein Geraili & Ana Vila Verde, “Molecular mechanismsbehindproteinhalotolerance”

    13.00‐14.00 LUNCH

    SESSION:ASTROBIOLOGY(CHAIRPERSON:KATHLEENBENISON)

    14.00‐14.30 JohnE.Hallsworth, “Saturatedsalt isnota limit for lifeonEarth”

    14.30‐15.00 Scott Perl & Bonnie Baxter, “Mineral preservation andphotoprotectiveattributesofhalophilicbacteriaandarchaeainmodernandPermianlakebedenvironments”

    15.00‐15.30 Jan Jehlička, “Raman spectroscopy to detect biomarkers ofhalophilesinsaltsofevaporites:fromnaturalcolonisationstosyntheticinclusions”

    15.30‐16.00 COFFEE/TEABREAKSESSION:GENETICS&EVOLUTION(CHAIRPERSON:TERRYJ.MCGENITY)

    16.00‐16.30 ThorstenAllers, “Evolution of chromosome architecture inHaloferaxvolcanii”

    16.30‐17.00 Jörg Soppa, “Polyploidy in halophilic Archaea: regulation,evolutionaryadvantages,andgeneconversion”

    17.00‐17.30 JosefaAntón,“Viralevolutionanddiversification:whathavewelearntfromSalinibacteranditsviruses?”

    17.30‐17.50 RafaelR.delaHaba,“FirstcompletegenomesequenceofaSalinivibriomemberandphylogenomicsofthewholegenus”

    18.00‐19.00 JOINTMEETINGOFTHEICSPSUBCOMMITTEESON‘TaxonomyofHalobacteria’and‘TaxonomyofHalomonadaceae’

  • Thursday,27June,2019

    SESSION:DIVERSITYOFHALOPHILICEUKARYOTES(CHAIRPERSON:AHARONOREN)

    8.30‐9.00 SabineFilker,“Diversitypatternsandhaloadaptationstrategiesofprotists”

    9.00‐9.20 AndreyPlotnikov, “Thediversityofprotist communities ininlandsalinelakesandriversoftheVolga‐Uralsteppes(Russia)”

    9.20‐9.50 NinaGunde‐Cimerman,“ThemaverickfungalgenusWallemia–fromhalotolerantW.mellicolatohalophilicandchaotolerantW.ichthyophaga”

    10.00‐10.20 Cene Gostinčar, “On generalists and specialists amonghalotolerantfungi”

    10.30‐11.00 COFFEE/TEABREAK

    SESSION:BIOTECHNOLOGY(CHAIRPERSON:ERWINGALINSKI)

    11.00‐11.20 GabrielaTeodosiu,“BiotechnologicalpotentialofhalophilicarchaeaisolatedfromRomanianextremehabitats”

    11.20‐11.40 Bhakti Salgaonkar, “Coproduction of alpha amylase andpolyhydroxyalkanoatebyHalococcusstrainGUVSC8”

    11.40‐12.00 SanketGaonkar, “Halo‐thermophilicprotease fromHalococcusagarilyticusGUGFAWS‐3(MF425611)”

    12.00‐12.20 RamKaran, “Single amplified genomes fromRed Sea brinepoolextremophiles‐asourceofnovelenzymes”

    12.20‐12.40 DorianaM. Buda, “Capacity of HalomicrobiummukohataeiDSM12886toovercomesilver‐inducedoxidativestress”

    12.40‐13.00 LukasBethlehem,“Heterologouslow‐saltproductionofectoineandhydroxyectoine:isEscherichiacolitheanswer?”

    13.00‐14.00 LUNCH14.00‐14.20 Jaimi Butler,“Gotculture?Halophilesforteachers,students

    andourcommunities”14.30‐17.00 POSTER SESSION & Poster evaluation for ISSLR Best Poster

    Award

    17.00‐17.45 CLOSINGLECTURE:ErwinA.Galinski,“Thestoryofectoine”

  • 18.00‐18.30 ClosingCeremony:ISSLRBestPoster&BestOralPresentationAwards,Farewellspeech

    19.00‐22.30 SocialEventbyAnsamblul„Mugurelul”andOrchestraSimfonicăUniversitarăUBB;GalaDinner[GrandHotelNapoca]

    Friday,28June,20198.30‐20.00 FieldtripstoSalinaTurda(http://salinaturda.eu/)andCheile

    Turzii(TurdaGorge)

  • 11

    YEAR Volume64(LXIV)2019MONTHJUNEISSUE1

    PUBLISHED ONLINE: 2019-06-17

    PUBLISHED PRINT: 2019-06-30

    STUDIAUNIVERSITATISBABEŞ‐BOLYAI

    BIOLOGIA

    1 STUDIAUBBEDITORIALOFFICE:B.P. Hașdeu no. 51, 400371 Cluj-Napoca, Romania,

    Phone + 40 264 405352, www.studia.ubbcluj.ro

    SUMAR–CONTENTS–SOMMAIRE–INHALT

    H. L. Banciu, A. Oren, About Halophiles 2019 ...................................................................... 19 ORALPRESENTATIONABSTRACTS

    OPENINGLECTURE

    R. Cavicchioli, Antarctic hypersaline communities – environmental ‘omics’andlaboratorystudies ..................................................................................................... 27

    SESSION:BIODIVERSITY

    G. Uritskiy, D. Gelsinger, A. Munn, J. DiRuggiero, Halite microbiome dynamics ....... 28 A. Ventosa, B. Vera-Gargallo, M. José León, A. Durán-Viseras, R. R. de la

    Haba, C. Sánchez-Porro, Hypersaline environments microbiome: soils versus salterns ................................................................................................................... 30

  • 12

    T. Viver, L. H. Orellana, S. Díaz, M. Urdiain, M. D. Ramos‐Barbero, J. E.González‐Pastor, A. Oren, R. Amann, J. Antón, K. T. Konstantinidis,R.Rosselló‐Móra,Highresilienceandresistanceofsolarsalternmicrobialassemblagesexposedtodifferentenvironmentalpressures.........................31

    R.R.delaHaba,C.López‐Hermoso,C.Sánchez‐Porro,K.T.Konstantinidis,A.Ventosa,FirstcompletegenomesequenceofaSalinivibriomemberandphylogenomicsofthewholegenus...................................................................33

    S. Filker, L. Weinisch, S. Kühner, Diversity patterns and haloadaptationstrategiesofprotists........................................................................................................34

    A.Plotnikov,E.Selivanova,D.Poshvina,Y.Khlopko,ThediversityofprotistcommunitiesininlandsalinelakesandriversoftheVolga‐Uralsteppes(Russia).................................................................................................................................36

    C. Gostinčar, X. Sun, J. Zajc, P. Zalar, Y. Tang, C. Fang, Y. Luo, Z. Song, N.Gunde‐Cimerman,Themaverick fungalgenusWallemia – fromhalo‐tolerantW.mellicolatohalophilicandchaotolerantW.ichthyophaga.......37

    C.Gostinčar,X.Sun,J.Zajc,P.Zalar,M.Turk,J.Zupančič,Y.Tang,C.Fang,Y.Luo, Z. Song, N. Gunde‐Cimerman, On generalists and specialistsamonghalotolerantfungi..............................................................................................38

    SESSION:ECOLOGYANDBIOGEOCHEMISTRY

    M. Enache, R. Cojoc, S. Neagu, I. Gomoiu, I. Lucaci, R. Ruginescu, G.Teodosiu,L.Florescu,M.Moldoveanu,HowsaltedisRomania?..................39

    A.Oren,R.E.Bardavid,L.Mana,B.Lazar,T.Rivlin,I.Gavrieli,Whywasn’ttheDeadSearedinthefirsthalfofthe20thcentury?........................................40

    B.L.Kemp,E.M.Tabish,A.J.Wolford,D.L.Jones,J.K.Butler,B.K.Baxter,Biogeography,halophiles,andavianmechanicalcarriers...............................42

    N.A.Korovessis,Theecologicalimportanceofsolarsaltworks.............................43N.Perini,F.Mercuri,S.Orlanducci,M.C.Thaller,A.Rubechini,D.Castiello,

    V. Talarico, L. Migliore, Purple Spots on ancient parchments vs RedHeats on present‐day leathers: the unveiled secret of the salt‐curedhides.......................................................................................................................................44

    M.Bader,S.Hilpmann,J.S.Swanson,R.Steudtner,B.Drobot,M.Schmidt,A.Rossberg, A. Ikeda‐Ohno, T. Stumpf, A. Cherkouk, Interaction ofuraniumwithhalophilicmicroorganisms..............................................................45

    Noor‐ul‐Huda Ghori, M. Wise, A. S. Whiteley, Uncovering the microbialinteractome:Thesociallifeofextremophiles.......................................................46

  • 13

    T. J. McGenity, Life in a pinch of salt ................................................................................... 47 F. Rodriguez-Valera, P. Cabello-Yeves, Marine-freshwater transitions require

    extensive changes in the proteome. What it takes to live without salt ...... 48 M. M. Yakimov, V. La Cono, D. Y. Sorokin, Microbial diversity in the deep-

    sea anaerobic hypersaline environments with emphasis on the role of anaerobic haloarchaea in C and S cycles ................................................................. 49

    K. C. Benison, Integrating geology and microbiology to understand preservation of extremophiles in salt minerals ................................................... 50

    M. Dyall-Smith, S.-L. Tang, F. Pfeiffer, Haloviruses: the bad, the worse and the surprising ..................................................................................................................... 51

    R. M. M. Abed, Structural-functional analysis of extremely hypersaline microbial mats from the Arabian Peninsula ......................................................... 52

    M. D. Ramos-Barbero, J. Christie-Oleza, J. R. Hernández-Fernaud, M. Martínez-García, F. Santos, J. Antón, “Metaviromics asks, metaviro-proteomics answers” ....................................................................................................... 53

    M. D. Ramos-Barbero, J. Villamor, T. Viver, F. Santos, M. Martínez-García, R. Rosselló-Móra, J. Antón, Viral evolution and diversification: what have we learnt from Salinibacter and its viruses? .......................................................... 54

    SESSION:BIOCHEMISTRYANDPHYSIOLOGY

    M. S. Muntyan, A. M. Malinen, D. Y. Sorokin, V. P. Skulachev, Bioenergetics of haloalkaliphiles ............................................................................................................. 55

    E. Bremer, The extremolytes ectoine and hydroxyectoine: import, synthesis and genetic regulation in response to osmotic stress ........................................ 57

    H. J. Kunte, S. Meyer, Effect of ectoine on DNA: Mechanisms of interaction and protection .................................................................................................................... 59

    L. Czech, S. Smits, E. Bremer, Synthesis, uptake and excretion of ectoines in the alpha-proteobacteria HyphomonasneptuniumandNovosphingobium sp. LH128 .............................................................................................................................. 60

    M. Pohlschröder, A. DiLucido, F. Pfeiffer, F. M. A. Halim, C-terminal lipid-anchoring of Haloferaxvolcanii surface proteins ................................................ 62

    A. K. Schmid, Comparative analysis of transcription regulatory networks across the halophile phylogeny ................................................................................... 63

    T. Thompson, A. Busetti, S. Kelly, V. Fuentes, J. Megaw, B. Gilmore, Quorum sensing: signaling from haloarchaea to bacteria .................................................. 64

    H. Geraili, A. Vila Verde, Molecular mechanisms behind halotolerance of proteins ................................................................................................................................. 65

  • 14

    SESSION:GENETICSANDEVOLUTION

    I. Turgeman-Grott, U. Neri, M. Ouellette, R. T. Papke, U. Gophna, CRISPR-Cas systems in haloarchaea more than just antiviral defense? ...................... 66

    D. Ausiannikava, H. Marriott, T. Allers, Evolution of chromosome architecture in Haloferaxvolcanii .............................................................................. 67

    J. Soppa, Polyploidy in halophilic Archaea: regulation, evolutionary advantages, and gene conversion ........................................................................................................ 68

    SESSION:ASTROBIOLOGY

    J. E. Hallsworth, Saturated salt is not a limit for life on Earth .................................. 69 S. M. Perl, B. K. Baxter, A. J. Celestian, Mineral preservation and photoprotective

    attributes of halophilic bacteria and archaea in modern and Permian lakebed environments .................................................................................................... 71

    J. Jehlička, A. Culka, A. Oren, Raman spectroscopy to detect biomarkers of halophiles in salts of evaporites: from natural colonisations to synthetic inclusions .............................................................................................................................. 72

    SESSION:BIOTECHNOLOGY

    G. Teodosiu, M. Enache, Biotechnological potential of halophilic archaea isolated from Romanian extreme habitats ............................................................. 73

    B. B. Salgaonkar, J. M. Bragança, Coproduction of alpha amylase and polyhydroxyalkanoate by Halococcus strain GUVSC8 ....................................... 74

    S. K. Gaonkar, I. Furtado, Halo-thermophilic protease from Halococcus agarilyticus GUGFAWS-3 (MF425611)..................................................................... 75

    R. Karan, S. Grötzinger, M. Vogler, A. Akal, D. Renn, A. Vancea, S. DasSarma, J. Eppinger, M. Rueping, Single amplified genomes from Red Sea brine pool extremophiles - a source of novel enzymes ................................................. 76

    D. -M. Buda, P. -A. Bulzu, L. Barbu-Tudoran, A. Porfire, L. Pătraș, A. Sesărman, S. Tripon, H. L. Banciu, Capacity of Halomicrobium mukohataei DSM 12886 to overcome silver-induced oxidative stress ................................ 77

    L. Bethlehem, K. D. Moritz, M. L. Sümmermann, P. Schein, E. A. Galinski, Heterologous low-salt production of ectoine and hydroxyectoine: is Escherichiacoli the answer? ......................................................................................... 78

    SESSION:EDUCATION

    J. Butler, B. K. Baxter, “Got culture? Halophiles for teachers, students and our communities” .............................................................................................................. 79

  • 15

    CLOSINGLECTURE

    E. A. Galinski, The story of ectoine ............................................................................................ 80

    POSTERABSTRACTS

    SECTION:BIODIVERSITY

    S. A. Begmatov, O. V. Selitskaya, N. A. Manucharova, L. V. Vasilyeva, J. J. Berestovskaja, N. V. Drenova, Biodiversity of the halophilic microbiome of the rhizosphere of Salicornia ....................................................................................... 83

    E. G. Calhoun, A. M. Staab, D. L. Parrott, Jr., Characterization of halophyte rhizosphere microbiomes at Great Salt Lake, Utah ............................................. 84

    A. Durán-Viseras, A.-Ș. Andrei, R. Ghai, C. Sánchez-Porro, A. Ventosa, Halonotius species genome-scale metabolic reconstructions of new designated cobalamin synthesis as a Black Queen (BQ) function in haloarchaea ......................................................................................................................... 85

    P. Gómez-Villegas, A. León-Vaz, M. Vila, J. Vigara, R. León, Description of the eukaryotic microbial population in a solar saltern pond of the Odiel marshlands (SW Spain) .................................................................................................. 86

    P. Gómez-Villegas, J. Vigara, R. León, Characterization of the prokaryotic diversity inhabiting a solar saltern pond of the Odiel marshlands (SW Spain) ..................................................................................................................................... 87

    G. Liu, J. Wang, X. Zheng, B. Liu, Bacillusalkalisalsus sp. nov., isolated from saline-alkaline soil samples .......................................................................................... 88

    G. Liu, X. Zheng, J. Wang, J. Che, B. Liu, Bacillusalkalisoli sp. nov., isolated from alkaline soils ............................................................................................................ 89

    J. Megaw, S. Kelly, T. Thompson, T. Skvortsov, B. Gilmore, Biodiversity and antibiotic resistance profiling of a Triassic halite deposit in Northern Ireland.................................................................................................................................... 90

    C. Sánchez-Porro, A. Durán-Viseras, A. Ventosa, Halorientalis pallida sp. nov., a new extremely halophilic archaeon isolated from a marine saltern in Spain .................................................................................................................................. 91

    E. Selivanova, Y. Khlopko, A. Plotnikov, The prokaryotic diversity in cultures of halophilic phototrophic and heterotrophic protists .......................................... 92

    M. Turk, V. Podgrajšek, N. Gunde-Cimerman, The effect of salting on the bacterial load of holy water from Catholic churches ........................................ 93

    P. Zalar, I. Strmecki, J. Zajc, C. Gostinčar, N. Gunde-Cimerman, Mg2+-rich bitterns host highly adapted fungi ............................................................................. 94

  • 16

    SECTION:ECOLOGYANDBIOGEOCHEMISTRY

    B. Aldeguer, M. D. Ramos‐Barbero, C. López, F. Santos, A. Belén Martín‐Cuadrado, J. Antón, Characterization of extracellularDNA, the forgottenfractionofhypersalineenvironments......................................................................95

    A. Baricz, C. Chiriac, P.‐A. Bulzu, A. Cristea, Z. G. Keresztes, T. Tămaș,M.Alexe,H.L.Banciu,Patternsofprokaryoticdiversity insedimentsofbrackishtohypersalinesaltlakesinRomania................................................96

    E. Bartha, T. J. McGenity, B. A. McKew, E. Low‐Decarie, Extremophileseverywhereandthelimitsofmicrobiallife...........................................................97

    G.Haferburg,J.Gröning,N.Schmidt,J.C.Erquicia,M.Schlömann,Explorationoftheprokaryoticdiversityinthehypersalineandlithium‐richSalardeUyuni,BoliviabyDNAmetabarcoding.....................................................................98

    S. Kajale, Y. Shouche, N. Deshpande, A. Sharma, Culturable prokaryoticdiversityfromSambharhypersalinelake...............................................................99

    G.Liu,X.Zheng,J.Wang,J.Che,M.Lei,B.Liu,ThecommunityofculturablehalotolerantandhalophilicBacillus‐likespeciesinFujianProvince.......100

    S.Mukherji,A.Ghosh,Archaealhydrocarbondegradationinahypersalineenvironment.....................................................................................................................101

    A.Oren,F.‐W.Meng,‘Red–themagiccolorforsolarsaltproduction’–butsincewhen?......................................................................................................................102

    S.Shet,S.Garg,Plantgrowthpromotingpotentialofmoderatehalophiliccoastal sanddune isolateBacillusmarisflavi strainK7SpZMAO002ofGoa–India........................................................................................................................103

    SECTION:BIOCHEMISTRYANDPHYSIOLOGY

    A.Galeva,A.Syutkin,M.Pyatibratov,I.Kireev,O.Fedorov,Tat‐filaments–noveltypeofarchaealsurfacestructures............................................................104

    A. Galeva, M. Pyatibratov, A. Syutkin, T. E. F. Quax, T. Melnik, A. Surin,S.Beznosov,O.Fedorov,ComparativestudiesofHalorubrumlacusprofundiarchaellasynthesizedindifferentways...............................................................105

    M. R.Miranda‐Katz, A. M. Gregory, S. M. Graham, R. F. Peck, Analysis ofgenes that mediate persistence in halophilic microbes subjected toosmoticshock..................................................................................................................106

    G.Payá,V.Bautista,M.Camacho,J.Esclapez,M.JoséBonete,AnalysisoftheexpressionandfunctionofHaloferaxmediterraneilsm1gene...................107

    G.Payá,V.Bautista,M.Camacho, J.Esclapez,M. JoséBonete,TranscriptionalregulatorsofHaloferaxmediterraneirelatedtonitrogensource..............108

  • 17

    G. Payá, V. Bautista, M. Camacho, M. José Bonete, J. Esclapez, sRNAome in response to nitrogen source of Haloferaxmediterranei ................................. 109

    A. A. Richter, S. Kobus, L. Czech, A. Höppner, J. Zarzycki, T. Erb, L. Lauterbach, J. S. Dickschat, E. Bremer, S. H. J. Smits, Making the stress-protectant ectoine: Structural and biochemical insights into the acetyltransferase EctA ...................................................................................................................................... 110

    V. Rodríguez-Herrero, V. Bautista, M. Camacho, M. Cortés, M.-J. Bonete, J. Esclapez, Transcriptional analysis of glnA deletion mutant in Haloferaxmediterranei ..................................................................................................................... 111

    SECTION:GENETICSANDEVOLUTION

    L. Hermann, E. Bremer, Catabolism of the extremolytes ectoine and hydroxyectoine – Regulation and mechanisms ................................................. 113

    H. Minegishi, Y. Shimane, M. Kamekura, A. Ventosa, T. Itoh, Reassessment of the taxonomic position of the genera Haloterrigena and Natrinema ....... 114

    U. Neri, Y. Feng, J. P. Gogarten, U. Gophna, Microbial interactions in the Dead Sea as reflected by enrichment cultures: the curious case of Nanohaloarchaea ... 115

    Y. Shalev, J. Eichler, U. Gophna, Mechanistic insights into cell fusion in Haloferax ............................................................................................................................ 116

    SECTION:BIOTECHNOLOGY

    J. J. Alvares, I. J. Furtado, Biosynthesis of selenium nanoparticles by Haloferaxalexandrinus GUSF-1 (KF796625) and their use in modulating the size and shape of calcium oxalate crystals ................................................................... 117

    M. A. Amoozegar, A. Safarpour, S. A. Shahzadeh Fazeli, Haloarchaeal strains as a new source for anti-cancer natural components ..................................... 118

    I. Chiciudean, I. Mereuță, E. L. Mihalachi, I. Lascu, S. M. Avramescu, P. Jablonski, M. Christensen, H. Hansen, I. Stoica, A.-M. Tanase, Halotolerant Black Sea bacteria for bioplastics production ................................................................ 119

    R. Cojoc, M. Enache, S. Neagu, G. Cogălniceanu, M. Mitoi, I. Gomoiu, The etiology of pink pigmentation on mural paintings. Case study: Humor Monastery, Romania ..................................................................................................... 120

    D. Constantinescu-Aruxandei, A. Butean, A. C. N. Vintilă, A. Vlaicu, A.-M. Gălan, A. Paulenco, S. Velea, F. Oancea, Stimulating effects of selenium and betaine on the halophyte microalga Dunaliellasalina .................................... 121

    A. Cristea, A.-M. Bratovianu, A.-M. Tripon, T. Kristea, H. L. Banciu, Effects of nitrogen and phosphorus limitations on polyhydroxyalkanoate synthesis by Halomonaselongata strains grown under saline conditions ................. 122

  • 18

    D. Hitomi, H. Minegishi, Y. Shimane, Isolation and characterization of halophilic mannan-degrading enzyme produced by halophilic archaea ..................... 123

    T. Ishikawa, H. Minegishi, Y. Shimane, Production and characterization of halophilic esterase and lipase from halophilic microorganisms ............... 124

    T. Ito, H. Minegishi, Y. Shimane, Characterization of halophilic cellulase-producing novel haloarchaea .................................................................................... 125

    K. Komiyama, H. Minegishi, Y. Shimane, Isolation and characterization of ultraviolet-resistant haloarchaea ............................................................................ 126

    A. I. Lucaci, R. Cojoc, S. Neagu, R. Ruginescu, I. Ardelean, M. Enache, The influence of the chloride content on the growth of halophilic bacteria isolated from the saline Lake Letea and their extracellular enzymatic activities ............................................................................................................................. 127

    K. Okunari, H. Minegishi, Y. Shimane, Isolation and characterization of halophilic cellulase-producing bacteria from soil samples in Japan......... 128

    R. Ruginescu, C. Purcărea, R. Cojoc, S. Neagu, I. Gomoiu, C. Dorador, P. Lavin, M. Enache, Halophilic microorganisms producing extracellular hydrolytic enzymes isolated from the Atacama Desert ................................. 129

    S. A. Shahzadeh Fazeli, A. Safarpour, Purification and structural determination of anti-cancer molecule extracted from an extremely halophilic bacterium, Salinivenusiranica ......................................................................................................... 130

    M. Shevchenko, V. Lysun, S. Sukhikh, E. Messina, M. Yakimov, Casting light on polysaccharolytic potential of haloarchaea .................................................. 131

    S. Umezawa, H. Minegishi, Y. Shimane, Exploring and characterization of extracellular halophilic amylase produced by haloarchaea ......................... 132

    AuthorsIndex ............................................................................................................................. 133

    AllauthorsareresponsibleforsubmittingmanuscriptsincomprehensibleUSorUKEnglishandensuringscientificaccuracy.

    Original pictures on front cover: The “Halophiles2019” logo represents a section through a collapsed bell-shaped salt mine. The outline is filled with a colored gradient denoting the permanent stratification of water

    in most of the salt lakes located in the Transylvanian Basin. © Graphics by Robi Farkas & Oana Țiu

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.19‐23)

    19

    AboutHalophiles2019HoriaL.Banciu1,andAharonOren21DepartmentofMolecularBiologyandBiotechnology,Babeș‐BolyaiUniversity,400006Cluj‐Napoca,Romania;2TheInstituteofLifeSciences,TheHebrewUniversityofJerusalem,TheEdmondJ.SafraCampus,9190401Jerusalem,Israel;Correspondingauthor,E‐mail:[email protected] the present communication, we define the aim and settings of the 12thInternationalConferenceonHalophilicMicroorganisms,heldbetween24‐28JuneatCluj‐Napoca,Romania.Abriefchronologicallistofprevioussymposiaandworkshopsonhalophilicmicroorganismsheldsince1978isalsoprovidedalongsideashortdescriptionofmainbenefitsandperspectivesof investigatingthebiologyanddiversityofhalophiles.Keywords: analogues for extraterrestrial habitats, bioprospecting, evolutionarybiology, halophile genomics, ecology andmetagenomicsof saline environments,osmoadaptivemechanisms.AimofHalophiles2019The meeting intends to gather scientists around the world to share theirenthusiasmandcatalyzenewlinesofresearchinecology,physiology,biodiversity,genetics,biochemistry,biophysics,biotechnologyandevolutionarybiologyofsalt‐lovingorganismsor‘halophiles’.ConferencedescriptionThe 12th International Conference on Halophilic Microorganisms'Halophiles2019'willbeheldinCluj‐Napoca,Romania, fromJune24to28,2019 (http://www.halophiles.eu). The oral and poster sessions will covertopics related to taxonomy, biodiversity, biophysics, ecology, physiology,molecularbiology,biochemistry,genetics,genomics,biotechnology,andotherfields.Therewillalsobea jointopenmeetingof the ICSPSubcommitteeson‘TaxonomyofHalobacteria’and‘TaxonomyofHalomonadaceae’.TherelevanceoftheHalophiles2019conference1.Shortintroduction.Halophile biology covers many different topics, including basic aspects ofthefunctioning of cells at high salt concentrations and low water activity,understandingthebiodiversityofhypersalineecosystemsandtheirenvironmentalhealthandsustainability,foodscience,biotechnologicalapplications,andevenspaceexplorationandplanetaryprotection.

  • KEYNOTE

    20

    2.Locationoftheconference.The scientific community interested in life at high salt concentrations willmeet again in Europe after three previousHalophilesmeetings held in Asia(Beijing, China, 2010), North America (Storrs, CT, USA, 2013) and CentralAmerica(SanJuan,PuertoRico,2016).Table1,basedinpartonOren(2011),presentsalistofearlierconferencesfocusedonthebiologyofhalophiles.Table1.Symposiaandworkshopsonhalophilicmicroorganismsheldsince1978.UpdatedfromOren(2011).Dates Title Organizers Venue FEMS

    supportedMay14‐19,1978

    Energeticsandstructureofhalophilicmicroorganisms

    S.R.Caplan,M.Ginzburg

    Rehovot,Israel 1981 EMBOWorkshoponhalophilic

    microorganismsJ.K.Lanyi Ischia,Italy

    September1‐6,1985

    Themolecularbasisofhaloadaptationinmicroorganisms

    W.D.Grant,M.Kogut,K.Wegmann

    Obermarchtal,Germany

    March23‐28,1986

    Aspectsofhalophilism H.Eisenberg Jerusalem,Israel

    March26‐April5,1989

    Modernaspectsofhalophilism–thetwelfthEdmonddeRothschildSchoolinMolecularBiophysics

    H.Eisenberg NeveIlanandRehovot,Israel

    September17‐22,1989

    General&appliedaspectsofhalophilicmicroorganisms

    F.Rodríguez‐Valera

    Alicante,Spain ●November15‐22,1992

    Halophilicbacteria:Researchprioritiesandbiotechnologicalpotentialforthe1990s

    R.H.Vreeland Williamsburg,VA,USA

    June22‐26,1997

    Microbiologyandbiogeochemistryofhypersalineenvironments

    A.Oren Jerusalem,Israel

    September23‐27,2001

    Halophiles2001 A.Ventosa Sevilla,Spain ●September4‐9,2004

    Halophiles2004 N.Gunde‐Cimerman,A.Plemenitaš

    Ljubljana,Slovenia

    September2‐6,2007

    Halophiles2007 T.J.McGenity Colchester,UK ●June29–July3,2010

    Halophiles2010 Y.Ma Beijing,P.R.China

    June23‐27,2013

    Halophiles2013 R.T.Papke Storrs,CT,USA May22‐27,2016

    Halophiles2016 R.Montalvo‐Rodríguez

    SanJuan,PuertoRico

    June24‐28,2019

    Halophiles2019 H.L.Banciu Cluj‐Napoca,Romania

  • ABOUTHALOPHILES2019

    21

    The congresswill be organized for the first time in Romania. The host city,Cluj‐Napoca(NWRomania) is locatednearbynumeroussaline lakesandsaltmines derived from exploitation of massive Miocene deposits of evaporitesunderlyingtheTransylvanianBasin(Alexeetal.,2018).SeveralRomaniangroupsofscientistsmainlybasedinCluj‐NapocaandBucharesthavedevelopedalong‐termsystematicinterestinexploringsaltlakeecosystemslocatedintheTransylvanianBasinandSERomania.RelevantdiscoveriesmadeinRomanian salt lakes were reported since the end of 19th century and thebeginningof20th centurybyE.C.Teodorescowhonamedanddescribed thegreenalgalgenusDunaliella (Teodoresco,1905)andbyE.Dadaywho in1888describedthehalotolerantcladoceranMoinasalina(Negrea,1984).ProfessorA.I.Maximcoinedtheterm'heliothermal'forheat‐accumulatinglakes,aphenomenonthathedocumentedinanumberofTransylvaniansaltlakes(Maxim,1929;1931).Recently, salt lakes from south and central Romania were the sources forisolation of novel archaeal (e.g.,Haloferaxprahovense) (Enacheetal., 2007) andbacterial taxa (e.g.,Rhodococcus sovatensis) (Táncsics etal., 2017). Additionally,microbial communities in the water column and sediments of permanentlystratifiedhypersalineTransylvanian lakeswereexploredbynext‐generationsequencing, demonstrating the presence of a surprisingly high diversity ofuncultivatedmicrobesinsuchhigh‐saltsystems(Andreietal.,2015;2017).3.Benefitsofunderstandinghalophiles.Weallgreatlybenefitfromtheknowledgeofthesepeculiar,salt‐lovingmicrobesinmanyfields.Halophilesarearichsourceofextremozymes,manyofwhicharestableinsolventsandmayfindindustrialapplications(Oren,2010;Yinetal.,2015).WhilehalophilicconsortiahavelongbeenusedinfermentativeprocessingoffoodproductssuchasinAsianfishsaucepreparations,currentlytherearelarge‐scale exploitations of the green alga Dunaliella for the production ofβ‐carotene(usedasfoodadditive)andthebacteriumHalomonasfortheproductionof ectoine (as component of cosmetics and pharmaceutical formulations)(Oren, 2010). Besides their increasing biotechnological prospects, halophilicmicroorganisms are exciting models to explore both the physiological andbiochemicaladaptationstohighsalinity(and,implicitly,tolowwateractivity)(Grant, 2004) and the molecular mechanisms involved in DNA replication,gene expression, genomic evolution and speciation. For example, the halophilicarchaea Haloferax volcanii and Haloferax mediterranei were among firstorganismsinwhichtheCRISPR/Cassystemwasdetected(Mojicaetal.,1995),beinganexcitingexampleofheredityofacquiredcharacteristicsinbiology.Finally,due to their high diversity and their wide repertoire of metabolic capabilities,halophilicmicrobesareintensivelyscrutinizedasmodelsofearlylifeformsandfortraits thatmay be found in hypothetical inhabitants of extraterrestrial, salt‐richhabitats(Litchfield,1998;Gómezetal.,2012).

  • KEYNOTE

    22

    Acknowledgements.WegratefullyacknowledgeFEMSforsupportingtheHalophiles2019 conference by FEMS Meeting Organizer Grant ‐ FEMS‐GO‐2018‐091. We alsoacknolwedge the grant of the Romanian National Authority for Scientific Research,CNCS–UEFISCDI,projectnumberPN‐III‐P4‐ID‐PCE‐2016‐0303.ReferencesAlexe, M., Șerban, G., Baricz, A., Andrei, A. Ș., Cristea, A., Battes, K. P., Cîmpean, M.,

    Momeu, L., Muntean, V., Porav, S. A., & Banciu, H. L. (2018). Limnology andplanktondiversityofsaltlakesfromTransylvanianBasin(Romania):Areview.JLimnol77:17‐34.

    Andrei,A.Ş.,RobesonII,M.S.,Baricz,A.,Coman,C.,Muntean,V.,Ionescu,A.,Etiope,G.,Alexe,M.,Sicora,C.I.,Podar,M.,&Banciu,H.L.(2015).Contrastingtaxonomicstratification of microbial communities in two hypersaline meromictic lakes.ISMEJ9:2642‐2656.

    Andrei,A.Ş.,Baricz,A.,Robeson,M.S.,Păuşan,M.R.,Tămaş,T.,Chiriac,C.,Szekeres,E.,Barbu‐Tudoran, L., Levei,, E. A., Coman, C. Podar, M., & Banciu, H. L. (2017).Hypersaline sapropels act as hotspots for microbial dark matter. Sci Rep 7:6150.

    Enache, M., Itoh, T., Kamekura, M., Teodosiu, G., & Dumitru, L. (2007). Haloferaxprahovensesp.nov.,anextremelyhalophilicarchaeonisolatedfromaRomaniansaltlake.IntJSystEvolMicrobiol57:393‐397.

    Grant,W.D. (2004).Lifeat lowwateractivity.PhilTransRSocLondBBiolSci359:1249‐1267.

    Gómez, F., Rodríguez‐Manfredi, J. A., Rodríguez, N., Fernández‐Sampedro, M.,Caballero‐Castrejón,F.J.,&Amils,R.(2012).Habitability:wheretolookforlife?Halophilic habitats: earth analogs to studyMars habitability.PlanetSpaceSci68:48‐55.

    Litchfield, C. D. (1998). Survival strategies for microorganisms in hypersalineenvironmentsand their relevance to lifeonearlyMars.MeteorPlanetSci33:813‐819.

    Maxim, I.A.(1929).Contributiontoexplainingsaltwaterswarm‐upphenomenoninTransylvania.LakesinSovata.[ArticleinRomanian].RevMuzGeol‐MineralUnivCluj3:49‐83.

    Maxim, I. A. (1931). Kontribution zur Erklärung des Erwärmungsprozesses derSalzteiche von Siebenbürgen. II. Die Teiche von Ocna‐Sibiului. RevMuzGeol‐MineralUnivCluj4:47‐111.

    Mojica, F. J.M., Ferrer, C., Juez, G., & Rodriguez‐Valera, F. (1995). Long stretches ofshort tandem repeats are present in the largest replicons of the ArchaeaHaloferaxmediterraneiandHaloferaxvolcaniiandcouldbeinvolvedinrepliconpartitioning.MolMicrobiol17:85‐93.

    Negrea,S. (1984).RedescriptiondeMoinasalinaDaday,1888(Cladocera,Moinidae)d'aprèsdesexemplairestrouvésenterratypica.Crustaceana47:83‐97.

  • ABOUTHALOPHILES2019

    23

    Oren, A. (2010). Industrial and environmental applications of halophilicmicroorganisms.EnvironTechnol31:825‐834.

    Oren,A.(2011).Ashorthistoryofthesymposiaonhalophilicmicroorganisms:fromRehovot 1978 to Beijing 2010. In: Ventosa, A., Oren, A., and Ma, Y. (eds.)Halophiles and hypersaline environments. CurrentResearch and Future Trends.Springer,Heidelberg,pp.373‐382.

    Táncsics,A.,Máthé,I.,Benedek,T.,Tóth,E.M.,Atasayar,E.,Spröer,C.,Márialigeti,K.,Felföldi,T.,&Kriszt,B.(2017).Rhodococcussovatensissp.nov.,anactinomyceteisolatedfromthehypersalineandheliothermalLakeUrsu.IntJSystEvolMicrobiol67:190‐196.

    Teodoresco,E.C.(1905).OrganisationetdéveloppementduDunaliella,nouveaugenredeVolvocacée‐Polyblepharidée.BeihBotCentralbl18(Abt.1):215‐232.

    Yin,J.,Chen,J.C.,Wu,Q.,&Chen,G.Q.(2015).Halophiles,comingstarsforindustrialbiotechnology.BiotechnolAdv33:1433‐1442.

  • ORALPRESENTATIONABSTRACTS

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.27)

    27

    Antarctichypersalinecommunities–environmental‘omics’andlaboratorystudiesRicardoCavicchioli1,1SchoolofBiotechnologyandBiomolecularSciences,UNSWSydney,NSW2052,Australia;Correspondingauthor,E‐mail:r.cavicchioli@unsw.edu.au.AbstractAntarcticlakesareatreasuretroveforthediscoveryofmicrobeswithpreviouslyunknownproperties.Marine‐derived,hypersalinesystems,includingthecoldestnaturalenvironmentonEarthknowntosupportlife,arepresentintheVestfoldHillsandRauerIslandsregionsofEastAntarctica(neartheAustralianresearchstation,Davis).Thelakessupportdiversearchaeaandviruses.InthistalkIwilldescribe hypothesis‐based and serendipitous discoveries involving synergiesrealizedthroughfieldandlaboratoryresearch.Environmental'omic'approaches(metagenomics and metaproteomics) have been instrumental in learningabouttheecology(e.g.communitystructure,interactions)andevolution(e.g.gene transfer, niche adaptation) of communities,with laboratory cultivationandmanipulationof lake isolatesenablingtargettedassessmentsofphysiology,metabolismandinteractions(cell‐cellandcell‐virus).Laboratoryexperimentationusing field sampleshasalsoproved lucrative fordiscoveringunexpectedmobilegenetic elements and cellular interactions, with ecological relevance of thediscoveriesbeingrealizedthroughfurtherinterrogationofenvironmental'omics'data.BystudyingAntarctichypersalinecommunitieswecomplementresearcheffortsoflower‐latitudinalenvironments,therebyexpandingunderstandingofendemism,biogeographyandtheglobalhalophilepan‐genome.

    Keywords: archaeal evolution, ecophysiological adaptation, gene exchange,haloarchaea,halovirus.Acknowledgements.ThisworkwassuportedbytheAustralianResearchCouncil.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.28‐29)

    28

    HalitemicrobiomedynamicsGhermanUritskiy1,DiegoGelsinger1,AdamMunn1andJocelyneDiRuggiero1,1JohnsHopkinsUniversity,3400N.CharlesSteet,Baltimore,USA;Correspondingauthor,E‐mail:[email protected] essential toourbiosphereand, as such,understanding themechanisms underlying their resilience is essential to predict the impact ofclimate change on Earth’s ecosystems. In the most arid deserts on Earth,endolithic microbial communities colonize the rocks’ interior as a survivalstrategy; because of their extreme nature, these communities are particularlysensitive to environmental changes. Over a 4‐year longitudinal study, usingshotgunmetagenomic sequencing,we characterize the temporal response of ahighlyspecializedcommunityinhabitinghalite(saltrocks)intheAtacamaDesert,to a catastrophic rainfall. Halite communities harbor mostly members of theArchaea,uniquecyanobacteria,diverseheterotrophicbacteria,andanoveltypeofalgae(Crits‐Christophetal.,2016).Ourresultssuggestan initialresponse tothe rain inwhich the community entered an unstable intermediate state afterstochasticnichere‐colonization,resultinginbroadpredictedproteinadaptationsto increased water availability. In contrast, during recovery, the communityreturnedtoitsformerfunctionalpotentialbyagradualshiftinabundancesofthenewlyacquiredtaxa(Uritskiyetal.,2019).Thecharacterizationthesetwomodesof community response could potentially be applied to other ecosystems,providingatheoreticalframeworkforpredictionoftaxonomicandfunctionalfluxfollowingenvironmentalchanges.Atthemolecularlevel,wediscoveredhundredsof small RNAs with potential regulatory roles and taxonomically assigned todiverse members of the halite community. Our data demonstrate that fieldexperiments, linking environmental variationwith changes in RNA pools, havepotential to provide new insights into environmental sensing and response innaturalmicrobialcommunities.Keywords:halite,microbialcommunities,sRNAs,stressresponse.Acknowledgements.ThisworkwassuportedbygrantsNNX15AP18GandNNX15AK57GfromNASA,DEB1556574fromtheNSF

  • ORALPRESENTATIONABSTRACT

    29

    References Crits‐Christoph,A.,Gelsinger,D.R.,Ma,B.,Wierzchos,J.,Ravel,J.,Davila,A.,Casero,M.C.,&

    DiRuggiero,J.(2016).Functionalinteractionsofarchaea,bacteriaandvirusesinahypersalineendolithiccommunity.EnvMicrobiol18:2064‐2077.

    Uritskiy,G.,Getsin,S.,Munn,A.,Gomez‐Silva,B.,Davila,A.,Glass,B.,Taylor,J.,&DiRuggiero,J.(2019).HalophilicmicrobialcommunitycompositionalshiftafterararerainfallintheAtacamaDesert.bioRxiv442525;doi:https://doi.org/10.1101/442525.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.30)

    30

    Hypersalineenvironmentsmicrobiome:soilsversussalternsAntonioVentosa1,BlancaVera‐Gargallo1,MªJoséLeón1,AnaDurán‐Viseras1,RafaelR.delaHaba1andCristinaSánchez‐Porro11Department of Microbiology and Parasitology, University of Sevilla, 41012 Sevilla, Spain;Correspondingauthor,E‐mail:[email protected] environments comprise aquatic and terrestrial habitats. During recentyears theprokaryoticdiversityandecologyofaquatichypersalineenvironmentshasbeenaddressedbymetagenomicstudies (Ventosaetal.,2015). Incontrast, a limitednumberofstudiesonthemicrobialdiversityofsalinesoilshavebeencarriedout,andtheyhavebeenmainlyfocusedoneitherBacteriaorArchaea.Toimproveourunderstandingoftheprokaryoticcommunitystructureinsalinesoils,westudiedrecently the phylogenetic diversity and metabolic potential of the prokaryoticcommunityofhypersalinesoilsfromtheOdielsaltmarshes(Spain)bymetagenomics.Comparativeanalysesofthesesalinesoilsmetagenomicdatabaseswithavailablemetagenomic databases from salterns ponds allowed further identification ofunique and shared traits of theprokaryotic communities dwelling in thesehabitats.Salinesoilsharboredamorediverseprokaryoticcommunityand, incontrasttotheiraquaticcounterparts,comprisedsequencesrelatedtobothknownhalophilesandtaxawithoutknownhalophilicorhalotolerant representatives,whichreflects thephysicalheterogeneityofthesoilmatrix.Thesoilsstudiedharboreduniquecommunitiesmainly composedof halophilic taxa from thephylaEuryarchaeota,Proteobacteria,Balneolaeota,BacteroidetesandRhodothermaeota(Vera‐Gargalloetal.,2018;2019).Keywords: hypersaline habitats, metagenomics, prokaryotic diversity, salterns,salinesoils.Acknowledgements.ThisworkwassuportedbyprojectCGL2017‐83385‐P(SpanishMinistry of Economy and Competitiveness‐MINECO) and by the Junta de Andalucia(BIO‐213),bothwithFEDERfunds.ReferencesVentosa,A.,delaHaba,R.R.,&Sánchez‐Porro,C.(2015).Microbialdiversityofhypersaline

    environments:ametagenomicapproach.CurrOpinMicrobiol25:80‐87.Vera‐Gargallo, B., & Ventosa, A. (2018).Metagenomic insights into the phylogenetic

    andmetabolicdiversityoftheprokaryoticcommunitydwellinginhypersalinesoilsfromtheOdielsaltmarshes(SWSpain).Genes9:152.

    Vera‐Gargallo,B.,Chowdhury,T.R.,Brown,J.,FanslerS.J.,Durán‐Viseras,A.,Sánchez‐Porro,C.,Bailey,V.L.,Jansson,J.K.,&Ventosa,A.(2019).Spatialdistributionofprokaryoticcommunitiesinhyerpsalinesoils.SciRep9:1769.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.31‐32)

    31

    HighresilienceandresistanceofsolarsalternmicrobialassemblagesexposedtodifferentenvironmentalpressuresTomeuViver1,,LuisH.Orellana2,SaraDíaz1,MercedesUrdiain1,MaríaDoloresRamos‐Barbero3,JoséE.González‐Pastor4,AharonOren5,RudolfAmann6,JosefaAntón3,KonstantinosT.Konstantinidis2andRamonRosselló‐Móra11Mediterranean Institute forAdvancedStudies (IMEDEA),DepartmentofAnimalandMicrobialBiodiversity,MarineMicrobiologyGroup,Esporles,Spain;2GeorgiaInstituteofTechnology,SchoolofCivil&EnvironmentalEngineering,Atlanta,Georgia,USA;3UniversityofAlicante,DepartmentofPhysiology,GeneticsandMicrobiolgoy,Alicante,Spain;4CentrodeAstrobiología,DepartmentofMolecularEvolution,Madrid,Spain; 5TheHebrewUniversityof Jerusalem,The InstituteofLifeSciences,DepartmentofPlantandEvironmentalScience,Jerusalem,Israel;6Max‐Planck‐InstitutefürMarineMikrobiologie,DepartmentofMolecularEcology,Bremen,Germany;Correspondingauthor,E‐mail:[email protected]‐csic.es.AbstractSolarsalternpondsof theEsTrenc(Mallorca‐Spain),withcrystallizerpondscontainingabout15m3ofbrine,representsan idealsetupsfor insitumesocosmstudies.Here,theinfluenceoflightintensitiesandtheeffectofsuddendilutionwere followedusingmetagenomics.Theresults indicated that light intensityand salinity are the deterministic factors driving the establishment of well‐adapted saltern microbial communities. Specifically, under high‐irradiationandhigh‐salinity conditions,highly resilientmicrobial communitiesweremainlydominated by thewell‐knownHaloquadratum spp. and Salinibacter spp. Ontheotherhand,differentmicrobialpopulationslessresistanttochangesdominatedunder low‐irradiation,with a yet unclassified haloarchaeon and Spiribacter‐likebacteriarepresentingthedominantspecies.Inadditiontotheseenvironmentalpressures,asuddendecreaseofsalinityfrom34%to12%highlightedamajorsensitivity of the archaeal but not the bacterial fractions. Once the salinityrecoveredtosaturationlevels,thehighlyresilientandwellestablishedcommunitydominated by Haloquadratum spp. and Salinibacter spp. reestablished.Additional shifts observed during salt dilution were related to changes inprimary producers and virus predation that influenced the dynamics of themicrobial communities. Collectively, our results support that environmentalfactors assayed here deterministically select the organisms that dominatesalternthemicrobialcommunities.

  • ORALPRESENTATIONABSTRACT

    32

    Keywords:hypersalineenvironments,resilience,temporalseries.Acknowledgements. This study was funded by the Spanish Ministry of EconomyprojectsCGL2012‐39627‐C03‐03andCLG2015_66686‐C3‐1‐P(toRRM),CGL2015_66686‐C3‐3‐P(toJA)andCGL2015_66686‐C3‐2‐P(toJEGP)whichwerealsosupportedwithEuropeanRegionalDevelopmentFund(FEDER)funds.RAwasfundedbytheMaxPlanckSociety. KTK’s researchwas supported, in part, by theU.S. National Science Foundation(AwardNo.1831582).TVPreceivedapre‐doctoralfellowship(Nr.BES‐2013‐064420)fromtheSpanishGovernmentMinistryforFinanceandCompetition.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.33)

    33

    FirstcompletegenomesequenceofaSalinivibriomemberandphylogenomicsofthewholegenusRafaelR.delaHaba1,,ClaraLópez‐Hermoso1,CristinaSánchez‐Porro1,KonstantinosT.Konstantinidis2andAntonioVentosa11UniversityofSevilla,FacultyofPharmacy,DepartmentofMicrobiologyandParasitology,Prof.GarcíaGonzález2,Sevilla,Spain;2GeorgiaInstituteofTechnology,SchoolofCivilandEnvironmentalEngineering,311FerstDrive,3224ES&T,Atlanta,Georgia,USA;Correspondingauthor,E‐mail:[email protected] are moderately halophilic bacteria that inhabit hypersalineenvironments,brinesandsaltymeats.Ourgrouphas recently sequenced36draftgenomesincludingtypeandreferencestrainswithinthegenusSalinivibrio(López‐Hermosoetal.,2017).Nevertheless,nocompletegenomesequenceiscurrently available for this genus. Therefore, this studywas focused on thecompletegenomereconstructionofthetypestrainofS.kushneriAL184TandonthedetailedphylogenomicanalysisoftheavailableSalinivibriogenomes.APacBiolibrarywith10kbpinsertsizewasconstructedanda350Xcoveragewasachieved.The genome of S. kushneri AL184T consists of two circular chromosomescontaining2,840,906bpand602,384bp,2,524and531CDS,andaDNAG+Ccontentof50.9%and50.1%,respectively.ThiscompletegenomewasusedasareferenceforsyntenyanalysesandcontigarrangementoftheotherSalnivibriotypestraingenomes.Phylogenomicsofthisgenuswasperformedbyusingthecoreorthologousgeneset identifiedbysharedreciprocalbestmatches.Thisanalysis allowed the proper affiliation of the Salinivibrio strains to a validlypublishedspeciesname.

    Keywords:completegenome,phylogenomics,Salinivibrio,synteny,taxonomy.Acknowledgements. This work was suported by projects CGL2017‐83385‐P(MINECO/FEDER,Spain)andbyJuntadeAndalucía(BIO‐213,Spain).ReferenceLópez‐Hermoso, C., de la Haba, R. R., Sánchez‐Porro, C., Bayliss, S. C., Feil, E. J., &

    Ventosa, A. (2017). Draft genome sequences of Salinivibrio proteolyticus,Salinivibriosharmensis,Salinivibriosiamensis,Salinivibriocosticolasubsp.alcaliphilus,Salinivibriocosticolasubsp.vallismortis,and29newisolatesbelongingtothegenusSalinivibrio.GenomeAnnounc5:e00244‐17.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.34‐35)

    34

    DiversitypatternsandhaloadaptationstrategiesofprotistsSabineFilker1,,LeaWeinisch1andSteffenKühner11UniversityofKaiserslautern,Erwin‐Schroedinger‐St.14,67663Kaiserslautern,Germany;Correspondingauthor,E‐mail:[email protected]‐kl.de.AbstractThe identificationofenvironmentalbarriers thatgovernspeciesdistributionisafundamentalconcerninecology.Saltwaspreviouslyidentifiedasamajortransitionboundaryformicro‐andmacroorganismsalike,selectingfororganismsadapted to this environmental stressor and probably also preventing theirdispersal. The salinities causing species turnover in protistan communities,however, remained unknown. We analysed protistan plankton communitystructuresinvarioussaltpondsfromdifferentgeographicregions.Salinityinthesehabitatsrangedbetween4to>40%.Partitioningofdiversitypointedtoanichedifferentiation,suggestingdistinctsalinityclassesdefiningtheboundariesforprotistancommunityturnover.Regardlessoftheirgeographicorigin,protistancommunities in these salinity categories displayed different taxonomicmemberships.Laboratoryexperimentsusinghalophileciliateswereconductedtoinvestigate physiological constraints for the observed protistan communityturnover in hypersaline waters. Using proton nuclear magnetic resonancespectroscopy,theuseoftwocompatiblesolutestocombathigh‐saltconditionscouldbeshown,and,furthermore,significantpositivecorrelationsofintracellularconcentrations of the compatible solutes and external salinity could berevealed.Thisisthefirstexperimentalevidencethatheterotrophicprotistsusethesalt‐outstrategyashaloadaptation.However, theobservationofvarying relativeproportions of compatible solutes within the four ciliates points to slightdifferencesinhaloadaptivestrategiesbyregulatoryactionoftheciliates.Basedonthis finding, we provide an explanatory hypothesis for the distribution ofprotistandiversityalongsalinitygradients.Keywords:ciliates,compatiblesolutes,haloadaptation,protists,transitionboundaries

  • ORALPRESENTATIONABSTRACT

    35

    ReferencesFilker, S.,Forster, D., Weinisch, L., Mora Ruiz, M., González, B., Farías, M., Rosselló‐

    Móra, R., & Stoeck, T. (2017). Transition boundaries for protistan speciesturnover in hypersaline waters of different biogeographic regions.EnvironMicrobiol19:3186‐3200.

    Weinisch,L.,Kühner,S.,Roth,R.,Grimm,M.,Roth,T.,Netz,D.J.A.,Pierik,A.&Filker,S.,(2018). Identificationof osmoadaptive strategies in the halophile, heterotrophicciliateSchmidingerothrixsalinarum.PLoSBiol16:e2003892.

    Weinisch,L.,Kirchner,I.,Grimm,M.,Kühner,S.,Pierik,A.,Roselló‐Móra,R.&Filker,S.,(2018).Glycinebetaineandectoineare themajorcompatiblesolutesusedbyfourdifferenthalophilicheterotrophicciliates.MicrobEcol72:317‐331.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.36)

    36

    ThediversityofprotistcommunitiesininlandsalinelakesandriversoftheVolga‐Uralsteppes(Russia)AndreyPlotnikov1,,ElenaSelivanova1,DariaPoshvina1andYuriKhlopko11InstituteforCellularandIntracellularSymbiosisoftheUralBranchoftheRussianAcademyofSciences,460000,Pionerskayast,11,Orenburg,Russia;Correspondingauthor,E‐mail:[email protected] are ubiquitous aquatic unicellular eukaryotes playing a key role inmicrobial food webs of saline water ecosystems. However, there are fewdescriptions of the diversity of protist communities inhabiting inland salinewater bodies. We analysed the taxonomic composition and diversity ofprotistsininlandsalinelakesandriverslocatedinthepre‐UralandtheLowerVolgasteppes(Russia).Thesalinityofthesitesvariedfrom10to300g/L.Tocharacterize the protist diversitywe used a comprehensive approach, includingmicroscopic observation, cultivation, and high‐throughput sequencing (HTS)ofthe18SrRNAgene.Thetaxonomicstructureoftheprotistcommunitiesinthestudiedlakesandriversmainlydependedontheirsalinityandgeographiclocation.Withincreasingsalinity,taxonomicrichnessanddiversityofprotistsinthesalineinlandwatersdecreasedatalltaxonomiclevels,fromspeciesupto phyla. Ordination of the eukaryotic communities by principal componentanalysisshowedclusteringofsampleswithhighsalinity(285‐300g/L),whereasother samples with lower salinity were not grouped clearly. A negligiblenumber of shared genera in the studied water bodies indicated the uniquetaxonomiccompositionofeachprotistcommunity.Ahighpercentageofnovelphylotypeswas revealed. Extremely halotolerant and halophilic heteroloboseanamoeboflagellateswerefoundtobeaspecificheterotrophiccomponentofthestudiedprotistcommunities.Morphology,physiology,andmolecularphylogenyofnew heterolobosean taxawere characterised. The comprehensive approach,combiningHTSofthe18SrRNAgenewithclassicalprotistologicaltechniques,providesavalidestimationofprotistdiversityininlandsalinewaterbodies.Keywords: heterolobosea, high‐throughput sequencing, inland saline waterbody,protists,protistcommunity.Acknowledgements.ThisworkwassuportedbyRFBR(17‐04‐02079,17‐04‐00135).

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.37)

    37

    ThemaverickfungalgenusWallemia–fromhalotolerantW.mellicolatohalophilicandchaotolerantW.ichthyophagaCeneGostinčar1,2,XiaohuanSun3,4,JanjaZajc1,5,PolonaZalar1,YuchongTang3,4,ChaoFang3,4,YonglunLuo2,3,6,ZeweiSong3,4andNinaGunde‐Cimerman1,1DepartmentofBiology,BiotechnicalFaculty,UniversityofLjubljana,Ljubljana, Slovenia; 2LarsBolundInstituteofRegenerativeMedicine,BGI‐Qingdao,Qingdao,China;3BGI‐Shenzhen,BeishanIndustrialZone,Yantian,Shenzhen,China;4ChinaNationalGeneBank,BGI‐Shenzhen,DapengNewDistrict,Shenzhen,China;5NationalInstituteofBiology,1000Ljubljana,Slovenia;6DepartmentofBiomedicine,AarhusUniversity,Aarhus,Denmark;Correspondingauthor,E‐mail:nina.gunde‐[email protected]‐lj.si.AbstractMost fungal species that form an integral part of microbial communities indifferenthypersaline environments around theworldarehalotolerant. Theygrowatsalinitiesexceeding2.9MNaClbutalsoinmediawithoutsalt.Wallemiaspp. thatuntil2005containedonly the speciesW. sebirepresentsan exception.Thegenusnowcontainssevenadditionalspecies:W.ichthyophaga,W.muriae,W.mellicola,W.canadensis,W.tropicalis,W.hederaeandW.peruviensis.Threeof them display obligate halophily. The rarest, and phylogenetically andmorphologicallymostdistinct species isW. ichthyophaga. It stronglyprefershigh concentrations of ionic over non‐ionic solutes, it is able to grow insaturated NaCl, KCl and MgSO4 solutions and even at around 2 M MgCl2,explaining its isolation from magnesium rich bitterns. One of the mostcommonandubiquitousspeciesofthegenusisextremotolerantW.mellicola.It is distributed worldwide, in a range of habitats: soil, air, house dust,hypersalinewaterof solar salterns, salted, sugaredanddried foodproducts,seeds,straw,pollenandforestplants.Althoughhalotolerant,itcangrowat4.1MNaCland1.4MMgCl2.The first genomeofW.mellicolawassequenced in2012andofW.ichthyophagain2013.Toinvestigatethehalotolerant/halophiliccharacterandpopulationcharacteristicsofbothspecieswenowresequencedgenomes of 22 W. ichthyophaga and of 25 W. mellicola strains, addingimportant informationonthis500millionoldbasidiomycetousgenuswithinsub‐phylumWallemiomycotina.Keywords: basidiomycete, halophilic fungus, population genomics,recombination,specialist.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.38)

    38

    OngeneralistsandspecialistsamonghalotolerantfungiCeneGostinčar1,2,,XiaohuanSun3,4,JanjaZajc1,5,PolonaZalar1,MartinaTurk1,JernejaZupančič1,YuchongTang3,4,ChaoFang3,4,YonglunLuo2,3,6,ZeweiSong3,4andNinaGunde‐Cimerman11DepartmentofBiology,BiotechnicalFaculty,UniversityofLjubljana,Ljubljana, Slovenia; 2LarsBolundInstituteofRegenerativeMedicine,BGI‐Qingdao,Qingdao,China;3BGI‐Shenzhen,BeishanIndustrialZone,Yantian,Shenzhen,China;4ChinaNationalGeneBank,BGI‐Shenzhen,DapengNewDistrict,Shenzhen,China;5NationalInstituteofBiology,1000Ljubljana,Slovenia;6DepartmentofBiomedicine,AarhusUniversity,Aarhus,Denmark;Correspondingauthor,E‐mail:[email protected]‐lj.si.AbstractAmongthemostfrequentlyisolatedhalotolerantfungiisAureobasidiumpullulans,a species found inhabitats asdifferent ashypersalinewater in the tropics andglacialiceofthepolarregions.Itisnotonlyhalotolerant,butpolyextremotolerant,highlyadaptableandnutritionallyversatile.Howcanaspeciesthriveinhypersalinewater, but also survive conditions inside theArctic glacier, onplant surface, inhousedustandinotherhabitats?Ordogeneralistspeciesinfactalwaysharbourcrypticspecialists,undetectedbytraditionalphylogeneticstudies,asindicatedbysome studies?We sequencedwhole genomes of fifty strains of the black yeastAureobasidiumpullulansisolatedfromvarioushabitatsworldwide,aswellasfiftygenomes of Aureobasidiummelanogenum and fifteen strains of Aureobasidiumsubglaciale.Thegenomessharedarelativelyhighdegreeofintraspecificvariability.Nevertheless,thegenomesofA.pullulansforexamplecontainedaredundancyofalkalimetalcationtransportersandthisredundancywashighlyconservedbetweenthestrains.Habitatgeneralistsandhabitatspecialistsdifferedintermsoftheamountofgenomicrecombinationandtheexistenceofgeneticallydefinedsubpopulationsinthespecies.Certainfungiappeartobetruegeneralists,withstrainsfromasinglerecombiningpopulationinhabitingdiversehabitatswithnosignsofspecialisationforeachofthesehabitatsonthegenomiclevel,whileother,closelyrelatedspeciesemploymuchmorespecialisedecologicalstrategies.Keywords:comparativegenomics,fungi,generalists,populationgenomicsReferencesGostinčar, C., Stajich, J. E., Zupančič, J., Zalar, P., & Gunde‐Cimerman, N. (2018).

    Genomic evidence for intraspecific hybridization in a clonal and extremelyhalotolerantyeast.BMCGenomics19:364

    Gostinčar, C., Turk, M., Zajc, J., & Gunde‐Cimerman, N. (2019). Fifty Aureobasidiumpullulans genomes reveal a recombiningpolyextremotolerant generalist.EnvironMicrobiol,underreview.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.39)

    39

    HowsaltedisRomania?MădălinEnache1,,RoxanaCojoc1,SimonaNeagu1,IoanaGomoiu1,IoanaLucaci1,RobertRuginescu1,GabrielaTeodosiu1,LarisaFlorescu1andMirelaMoldoveanu11InstituteofBiologyBucharestoftheRomanianAcademy,296SplaiulIndependentei,Bucharest,Romania;Correspondingauthor,E‐mail:madalin.enache@ibiol.ro.AbstractSalineenvironmentsarewidelydistributedintheworldasaconsequenceofthegeologicalstepsintheevolutionoftheEarth.Alotofsalinelakesandsaltdepositarealso foundontheRomaniaterritory, themostrepresentativebeingUrsu Lake, complex of saline lakes in Slanic Prahova or Ocna Sibiului and SaltLake(BrailaCounty).ThesaltdepositsontheRomaniaterritoryhavegeologicalagefromtheperiodsofTriassic(inMoesicplatform–southofRomania)andMiocene (Transylvania and Maramures areas). Over 300 salt massifs wereidentified in‐ or extra‐Carpathian areas and in some places (Slanic Prahova,Praid, Sarata Monteoru) piercing the Earth in the form of salt „mountains”(Ciobanu,2002).Thisworkwillbefocusedonthemainresultsobtainedinourlaboratoriesinlastyearsandthemaininvestigatedsalineecosystemswillbepresented. The studies on the salt lake complex and from salt deposit fromSlanicPrahovaareaconductedto the isolationofanovelhaloarchaeastrain,namelyHaloferaxprahovenseandhavehighlightedsomerelationshipbetweenmicrobialcomposition in lakesanddeposit.Recently investigatedsaline lakeLetea, located inner Danube Delta revealed a seasonally variable salinity ofthisecosystemwhichisreflectedinmicrobialcommunitiesnotonlyhalophilicone,butalsoinvolvedinmainbiogeochemicalcyclesofnitrogenandsulphur.Ontheotherhand,thehalophilicmicroorganismsbelongingtoGaricolagenushave been isolated from so called „unusual habitat for halophiles”, namelymuralpaintingfromrefectoryofHureziMonastery.Keywords:halophiles,pinkcoloration,salineecosystem.ReferencesCiobanu,D.(2002).Exploatareasariiinperioadamarilormigratii(sec.I–XIIIe.n.)

    inspatiulcarpato‐dunarean.Ed.AlphaBuzau(inRomanian)

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.40‐41)

    40

    Whywasn’ttheDeadSearedinthefirsthalfofthe20thcentury?AharonOren1,,RahelEleviBardavid1,LilyMana1,BoazLazar2,TanyaRivlin3andIttaiGavrieli41TheHebrewUniversityofJerusalem,9190401Jerusalem,Israel;2TheInstituteofEarthSciences,TheHebrewUniversityofJerusalem,9190401Jerusalem,Israel;3TheInteruniversityInstituteforMarineSciencesinEilat,Eilat8810302,Israel;4TheGeologicalSurveyofIsrael,Yesha'ayahuLeibowitz32,Jerusalem9371234,Israel;Correspondingauthor,E‐mail:aharon.oren@mail.huji.ac.il.AbstractDuringthe19thcenturyandthefirstdecadesofthe20thcentury,theDeadSeawas considered sterile. Only in the 1930s was the lake shown to harbormicrobiallife.Bloomsofunicellularalgae(Dunaliella)andhalophilicArchaea(Halobacteria)wereobservedin1980and1992,coloringthelakered(Oren,1997). The question must be asked why such bloomswere never reportedearlier,despitethefactthatthesurfacewatersalinitywassufficientlylowformicrobialproliferation.PhosphateisthelimitingnutrientforprimaryproductionintheDeadSea.Wehereshowthatphosphatelikelywasscavengedbygypsumthatduringearliertimesprecipitatedfromthelake’swatercolumn.NowadaysverylittlesulfateisleftintheDeadSea(<5mM).Significantamountsofgypsumarenolongerformed,sothatphosphatethatenterswithfloodwatersinrainyyearsorwiththelimitedbaseflowremainsavailableandcantriggermicrobialblooms.ImplementationoftheplannedRedSea‐DeadSeawaterconveyanceprogram to restore the shrinkingDeadSeaby inflowofmassiveamountsofwaterfromtheRedSea(Orenetal.,2004;Glausiusz,2010)willagainleadtomassive precipitation of gypsum due to the high sulfate content of Red Seawater thatwillmix in thecalcium‐richDeadSeabrine.Despite theexpecteddilution of the surface water, phosphate scavenging is then expected todepletethelakeofthelimitingnutrient,makingthechanceofdensealgalandarchaealbloomsmuchsmallerthanpredictedearlier.Keywords:DeadSea,Dunaliella,gypsum,Halobacteria,phosphate.

  • ORALPRESENTATIONABSTRACT

    41

    ReferencesOren,A.(1997).MicrobiologicalstudiesintheDeadSea:1892‐1992,In:NiemiT.,Ben‐

    Avraham Z., Gat, J.R. (eds.) The Dead Sea ‐ The Lake and its Setting. OxfordUniversityPress,pp.205‐213.NewYork,USA.

    Oren,A.,Gavrieli,I.,Gavrieli,J.,Lati,J.,Kohen,M.,Aharoni,M.(2004).Biologicaleffectsof dilutionofDeadSeawaterwith seawater: implications for theplanningoftheRedSea–DeadSea“PeaceConduit”.JMarSyst46:121‐131.

    Glausiusz,J.(2010).NewlifefortheDeadSea?Nature464:1118‐1120.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.42)

    42

    Biogeography,halophiles,andavianmechanicalcarriersBexL.Kemp1,ErinM.Tabish1,AdamJ.Wolford1,DanielL.Jones1,JaimiK.Butler1andBonnieK.Baxter1,1GreatSaltLakeInstitute,WestminsterCollege,1840South1300East,SaltLakeCityUtah,USA,84105;Correspondingauthor,E‐mail:[email protected] archaea inhabit hypersaline ecosystems globally, and geneticallysimilar strains have been found in locales that are geographically isolatedfrom one another.We sought to test the hypothesis that small salt crystalsharboringhalophilic archaeacouldbe carriedonbird feathersand thatbirdmigrationisadrivingforceofthesedistributions.Inthisstudy,wediscoveredthat the American White Pelicans (AWPE) at Great Salt Lake soak in thehypersalinebrineandaccumulate salt crystals (halite)on their feathers.Wecultured halophilic archaea from AWPE feathers and halite crystals. Themicroorganisms isolated from the lakeshore crystalswere restricted to twogenera:HalorubrumandHaloarcula,however,archaeafromthefeatherswerestrictlyHaloarcula.WecomparedpartialDNAsequenceofthe16SrRNAgenefrom our cultivarswith that of similar strains in the GenBank database. Tounderstand the biogeography of genetically similar halophilic archaea, westudiedthegeographicallocationsofthesamplingsitesoftheclosest‐matchedspecies. An analysis of the environmental factors of each site pointed tosalinityasthemostimportantfactorforselection.Thegeographyofthesiteswas consistent with the location of the sub‐tropical jet streamwhere birdstypicallymigrate,supportingtheaviandispersalhypothesis.

    Keywords:aviancarriers,GreatSaltLake,halophiles,haloarchaea,microbialbiogeographyAcknowledgements.ThisworkwassuportedbytheNASASpaceGrantPrimeAward(NNX15A124H, Sub‐Award 10037896WEST), the W.M. Keck Foundation, and theLawrenceT.andJanetT.DeeFoundation.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.43)

    43

    TheecologicalimportanceofsolarsaltworksNikolaosA.Korovessis1,1HellenicSaltworksS.A.,1,Asklipioustr.,10679Athens,Greece;Correspondingauthor,E‐mail:[email protected].

    AbstractSolar saltworks have produced salt by solar evaporation of seawater since thedawnofhumancivilization.However,recognitionoftheuniquecoastalecosystemthathasprogressivelydeveloped,inparallelwiththeseasaltproductionprocessevolutionisoftenlacking.Current,industrialsolarsaltworksconsistofaseriesofsuccessive, interconnecting lakes where the seawater enters and its densitygraduallyincreasesbysolarevaporation,asitflowsundercontrolledconditionsinto the lake system. Finally, a salinity vector develops throughout the lakessystem,whichresultsinsaltcrystallizationinthelaterlakeintheraw.Alongwiththe salinity vector, an extremely important biological process also develops ineverylake,consistingofplanktonicandbenthiccommunitiesofmicroorganismsthatcoverallexistingdomainsof life,Eukaryota,BacteriaandArchaea.Aseachlakefunctionsatsteadystate,auniqueecosystemiscreatedwhereregularandhypersalineenvironmentscoexist.Thephysicalandthebiologicalprocessofsolarsaltworksinteractstronglyandaffectboththequantityandqualityoftheirfinalproduct.Inthispaper,weexaminethekeyroleofthecrustaceanArtemiasalinacompared to that of the protozoan Fabrea salina. The presence of thesemicroorganismsdecisivelyaffectsthemicrobialsynthesis incrystallizers,whichinturndeterminesthesaltcrystallizationprocess.Currentsolarsaltworks,apartforbeingprofitableindustries,establishhighsignificantsalinewetlands,offeringtheircontributioninsafeguardingwetlandareasglobally.Theysimplyprovethatdevelopmentandenvironmentalprotectioncanindeedgohandinhand.Keywords:Fabreasalina,seasalt,solarsalt,solarsaltworks,wetlands.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.44)

    44

    PurpleSpotsonancientparchmentsvsRedHeatsonpresent‐dayleathers:theunveiledsecretofthesalt‐curedhidesNicolettaPerini1,,FulvioMercuri1,SilviaOrlanducci1,MariaCristinaThaller1,AlessandroRubechini2,DomenicoCastiello3,ValerioTalarico3andLucianaMigliore11TorVergataUniversity,ViadellaRicercaScientifica,snc,00133,Rome,Italy;2VaticanSecretArchives,VaticanCity,VaticanCity;3Po.Te.Co.s.c.r.l.,ViaSanTommaso,119/121/123,56029,SantaCrocesull’Arno(Pisa),Italy;Correspondingauthor,E‐mail:[email protected] products, used in many ways over centuries, can easily undergobiodeterioration.Modernhidesareoftendamagedbyredpatches,knownasred heats; historical parchments show similar signs of biodeterioration, thepurple spots. A two‐phases ecological succession explained the parchmentbiodeterioration process, identifying Halobacterium salinarum as the mainculpritofpurplespots,enteringtogetherwithsaltintothehideduringthebrining,in the first phase; whilst, the second phase changes with the history of eachparchment(Miglioreetal.,2017,2019).Toevaluate if similarbiodeteriorationdynamicscanbeidentifiedinbothleatherandparchment,amultidisciplinarystudy was performed on present‐day leathers. This approach consisted ofstandard cultivationmethods andmolecular, chemical andphysical updatedtechnologies,asNext‐GenerationSequencing(NGS),RamanspectroscopyandTransmitted Light Analysis (LTA). As a whole, (i) NGS demonstrated thatleatherssharethesametriggeringhalophilicagentsresponsiblefortheparchmentdamage;(ii)Ramananalysesdetectedbacteriorhodopsininredpatches;(iii)LTAshowedthatchrometanning,converselytoparchmentprocedure,chemicallystabilizeseventhedamagedareas,makingleatherproductspersistent.Keywords:brinecuredhides,H.salinarum,purplespots,redheatdeteriorationReferencesMigliore, L., Thaller, M.C., Vendittozzi, G., Mejia, A.Y., Mercuri, F., Orlanducci, S., &

    Rubechini,A.(2017).Purplespotdamagedynamicsinvestigatedbyanintegratedapproachona1244A.D.parchmentrollfromtheSecretVaticanArchive.SciRep7:9521.

    Migliore,L.,Perini,N.,Mercuri,F.,Orlanducci,S.,Rubechini,A.,&Thaller,M.C.(2019).Solvingthejigsawoftheparchmentpurplespotdeterioration:threedocumentsoftheXVI‐XVIIcenturyvalidatethemicrobialsuccessionmodel.SciRep9:1623.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.45)

    45

    InteractionofuraniumwithhalophilicmicroorganismsMiriamBader1,StephanHilpmann1,JulietS.Swanson2,RobinSteudtner1,BjörnDrobot1,MatthiasSchmidt3,AndréRossberg1,AtsushiIkeda‐Ohno1,ThorstenStumpf1andAndreaCherkouk1,1Helmholtz‐ZentrumDresden‐Rossendorf,InstituteofResourceEcology,BautznerLandstrasse400,Dresden,Germany;2LosAlamosNationalLaboratory,RepositoryScienceandOperations,Carlsbad,NewMexico,UnitedStatesofAmerica;3HelmholtzCentreforEnvironmentalResearch−UFZ,DepartmentofIsotopeBiogeochemistry,ProVIS,Leipzig,Germany;Correspondingauthor,E‐mail:a.cherkouk@hzdr.de.AbstractRocksaltsareconsideredaspotentialhostrocksforthelong‐termstorageofhighly radioactive waste in a deep geological repository. In addition tobacteria and fungi, extremely halophilic archaea, e.g.Halobacterium species,arepredominantlypresentinthishabitat.Forlong‐termriskassessmentitisof high interest to study how thesemicroorganisms can potentially interactwithradionuclidesiftheradionuclidesarereleasedfromthewasterepository.Giventhisfact,theinteractionsofextremelyhalophilicarchaeafromthegenusHalobacteriumand themoderatelyhalophilicbacteriumBrachybacterium sp.G1withuranium,oneofthemajorradionuclidesofconcerninthegeologicalrepositoryofradioactivewastes,wereinvestigatedindetailinbatchexperiments.Thearchaeaandthebacteriumshoweddifferentassociationmechanismswithuranium.Brachybacterium sp. G1 cells sorbed uraniumwithin a short time,whereas amuch longer andamulti‐stagebioassociationprocess, dependenton the uranium concentration, occurred with the archaea. Furthermore, amulti‐spectroscopic(time‐resolvedlaser‐inducedfluorescencespectroscopyandX‐rayabsorptionspectroscopy)and‐microscopic(scanningelectronmicroscopycoupledwithenergy‐dispersiveX‐rayanalysisforelementalmapping)approachwas used to elucidate the U(VI) bioassociation behavior. By using thesespectroscopic and microscopic tools, the formation of a U(VI) phosphatemineral,suchasmeta‐autunite,bytheHalobacteriumspecieswasdemonstrated.These findings offer new insights into the microbe‐actinide interactions athighlysalineconditionsrelevanttothedisposalofnuclearwaste.Keywords:deepgeologicalrepository,halophiles,uranium.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.46)

    46

    Uncoveringthemicrobialinteractome:ThesociallifeofextremophilesNoor‐ul‐HudaGhori1,,MichaelWise2andAndrewS.Whiteley11TheUniversityofWesternAustralia,TheUWASchoolofAgricultureandEnvironment(SAgE),Perth,Australia;2TheUniversityofWesternAustralia,DepartmentofComputerScienceandEngineering,Perth,Australia;Correspondingauthor,E‐mail:noor‐[email protected],locatedontheYilgarnCratoninsouthernWesternAustralia,isaroundlakewith~1kmdiameterandharboursauniqueenvironmentonEarth.Itexhibitsco‐stressorsofpH1.6‐4.5andsalinityof32%TDS.ThelakeisknowntohavethehighestconcentrationofdissolvedAl,FeandSiintheworld.LakeMagic undergoes stages of flooding, evapo‐concentration and desiccations,and hence, is a home to a diverse population of halophilic and acidophilicmicroorganisms.Understandingthediversitydynamicsandsurvivalstrategiesofextremophiles enables us to comprehend how they interact to drive keybiogeochemical cycles, and has broad applications in biomining, syntheticecologyandbiotechnology.Here,weusedatemporalapproachtounderstandprokaryoticandeukaryoticdiversity inthe lakesedimentandsaltmatusinghigh throughput amplicon sequencing. To further understand the survivalstrategiesofmicrobes,theirmicrobialinteractionswerestudiedusingahighthroughputco‐culturemethod.WeestablishedabottomupapproachbyusingbacterialspeciesisolatedfromLakeMagicinawell‐controlledsyntheticcommunityfedwithlabelled isotopesubstratesandanalysedthemthroughNanoSIMS.Westudiedthespeciesmetabolic interactionsinallmonoandpairwisecultures.Theresults indicatedthatthemicrobialdiversityandcompositionare significantlyaffectedbylakeconditions,andspeciesbecomemorespecialisedinbufferingtheincreasedacidityinthelakeasastrategytosurvive.NanoSIMSanalysisgaveanin‐depth view of carbon and nitrogen exchange between isolates, sheddinglightonthepotentialtacticstosurviveinthisextremeenvironment.

    Keywords: acid saline lake, amplicon sequencing, co‐culture, microbialecology,NanoSIMS.Acknowledgements. This work was supported by an Australian government PhDscholarship.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.47)

    47

    LifeinapinchofsaltTerryJ.McGenity1,1UniversityofEssex,SchoolofBiologicalSciences,WivenhoePark,Colchester,CO43SQ,UK;Correspondingauthor,E‐mail:[email protected] environments approachinghaliteprecipitationare rich inmicrobialbiomassbutpoor indiversity,dominatedbya rangeof extremelyhalophilicArchaea(haloarchaea)andtoalesserextentbyBacteriasuchasSalinibacterruber.ThephototrophicEukaryote,Dunaliellasalina,isamajorprimaryproducerinbrinespriortohaliteprecipitation.Theseextremelyhalophilicmicrobes,especiallythe haloarchaea, become trapped inside the brine inclusions of halite as itprecipitates.Theentombedmicrobesarethusprotectedfromdesiccation,UVlightandthe increasingsalinityandchaotropicityof theremainingbrine.Bytemporarilysurvivinginthismicroenvironmenttheycangrowinlargerbodiesofbrine formed when the halite dissolves. Analysis of the haloarchaea insidehalitecrystalsfrom~30coastalsolarsalternsacrossthegloberevealedthreeabundantspeciespresentinallcrystals:Halolaminasediminis,Halobacteriumnoricense andHalorubrumorientale(Clarketal.,2017).Laboratory experimentsshowed that Halobacterium species survive better in halite than the othermicrobestested,andthatco‐entombmentofmixedspeciesenhancessurvival(Gramain etal., 2011). The idea that survival inside halitemay extend overgeologicaltimewillbediscussed.Keywords:haloarchaea,longevity.Acknowledgements.ThisworkwassuportedbytheEuropeanUnion’sHorizon2020programme: Marie Skłodowska‐Curie grant 765256, SaltGiant, and COST ActionCA15103,MEDSALT;andtheUniversityofEssex.ReferencesClark,D.R.,Mathieu,M.,Mourot,L.,Dufossé,L.,Underwood,G.J.C,Dumbrell,A.J.,&

    McGenity, T.J. (2017). Biogeography at the limits of life: do extremophilicmicrobial communities show biogeographic regionalisation? Global Ecol Biogeogr26:1435–1446.

    Gramain,A.,ChongDíaz,G.,Demergasso,C.,Lowenstein,T.K.,&McGenity,T.J.(2011).ArchaealdiversityalongasubterraneansaltcorefromtheSalarGrande(Chile).EnvironMicrobiol13:2105–2121.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.48)

    48

    Marine‐freshwatertransitionsrequireextensivechangesintheproteome.WhatittakestolivewithoutsaltFranciscoRodriguez‐Valera1,andPedroCabello‐Yeves11EvolutionaryGenomicsGroup,UniversidadMiguelHernandez,SanJuandeAlicante,Spain;Correspondingauthor,E‐mail:[email protected] comparisonofmicrobial genomes found in either freshwater ormarinehabitats indicated that in some cases (SynechococcusandCa. Pelagibacter)therewerenotabledifferencesintheglobalisoelectricpoint(pI)ofproteins.We have analysed global metagenomic proteomes and have added moreprokaryotes to extend the pI comparison. Without exception, in a set thatincluded archaea andmultiple bacterial phyla, the proteome pI distributionvaried, with more acidic values in marine and neutral/basic in freshwatermicrobes.Fourpairsofhighlyrelatedprokaryotesofmarineand freshwateroriginrevealedmarkeddifferencesmanifestedmostlyintheresidueslocatedat the protein surface. This study has also shown that themagnitude of thechangedependedonproteinlocation(secreted>cytoplasmic>transmembrane)andaffectedproteins encodedatboth coreand flexible genome.Our resultspointtoaveryextensivevariationtakingplaceinmicrobeswhentheymovefrommarine (salt‐rich) to freshwaterhabitats.Theseadaptationswould requirelongevolutionarytimestoproducechangesinvolvingmanygenesinthecoregenome.Theyalsopointtosignificantdifferencesinthephysiology,probablyatthelevelofmembranefunctioning,bioenergetics,intracellularionconcentrationandpH(orallofthem).Keywords:intracellularions,isoelectricpoint,proteomics.Acknowledgements.Thisworkwas suportedbySpanishMinistryof ScienceGrantVIREVOCGL2016‐76273‐P

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.49)

    49

    Microbialdiversityinthedeep‐seaanaerobichypersalineenvironmentswithemphasisontheroleofanaerobichaloarchaeainCandScyclesMichailM.Yakimov1,,ViolettaLaCono1andDimitryYu.Sorokin2,31Institute forBiologicalResourcesandMarineBiotechnology, IRBIM‐CNR,SpianataSanRaineri,86,98122Messina, Italy; 2Winogradsky InstituteofMicrobiology,ResearchCentreofBiotechnology,RussianAcademyofSciences,Moscow,Russia;3DepartmentofBiotechnology,DelftUniversityofTechnology,Delft,TheNetherlands;Correspondingauthor,E‐mail:[email protected] halophilic archaea represented by classes Halobacteria,Methanonatronarchaeia and candidate division Nanohaloarchaea apparentlyoriginatedfromtwodistinctcladesofmethanogenicanaerobes.Themembersof classHalobacteriawithin thephylumEuryarachaeota arehypothesized toacquirebyamassive lateralLTGeventof~1,000eubacterial genes (30%oftheir genomes). As a consequence of this acquisition, most of the knownHalobacteriaspeciesareaerobicheterotrophsinhabitingoxygenatedlayersofbrineswithvery fewof thempossessing theability for fermentativegrowthand/oranaerobicrespiration.Ourrecentresearch,aimedatmicrobialsulfurrespirationatextremesalinityinanaerobicsediments,uncoveredtheexistenceofat least twonovel functional groupsof strict anaerobic sulfidogenichaloarchaea.Onegroup isusingacetateas theelectrondonor forelemental sulfur‐dependentrespiration ‐ a catabolic route overlooked previously in thewhole ArchaealKingdom. The second group uses formate and/or H2 as the electron donor andelementalsulfur,thiosulfateorDMSOasthealternativeacceptorsthus,representingafirstexampleoflithoheterotrophyinhaloarchaea.Thediscoveryofthesegroupsof obligate anaerobic sulfur‐respiring haloarchaea, widely present in anoxichypersalineenvironments,includingdeep‐seabrinelakes,showedthat(i)thecarbonandsulfurcyclesinanoxichypersalineecosystemsshouldbereconsideredand (ii) the dominant paradigm on the haloarchaeal physiology is far fromcompleteness.Keywords:deep‐seaanoxicbrinelakes,extremehalophiliceuryarchaea,genomesequence,Halobacteria,sulphurrespiration.Acknowledgements. This work was supported by the Italian Ministry ofUniversity and Research under RITMARE Flagship Project (2012–2016) andbythe“INMARE”Project (ContractH2020‐BG‐2014‐2634486), fundedbytheEuropeanUnion’sHorizon2020ResearchProgram.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIOLOGIA,64,1,2019(p.50)

    50

    IntegratinggeologyandmicrobiologytounderstandpreservationofextremophilesinsaltmineralsKathleenC.Benison1,1WestVirginiaUniversity,DepartmentofGeologyandGeography,Morgantown,WestVirginia,U.S.A.;Correspondingauthor,E‐mail:[email protected] halite and gypsum form by rapid precipitation from surface lake,seawater, and springbrines, allowing entrapmentof brines asprimary fluidinclusions.Airandothergases, solids,andmicroorganismsmayexistwithinfluidinclusionsorassolidinclusions.Recentadvancespermitinsituobservationsof morphologies, optical characteristics, and compositional signatures ofmicroorganismsandorganic compounds inhalite and gypsum fromacd saltlakes(i.e.,Conner&Benison,2013;Benison&Karmanocky,2014).Improvedlong‐working distancemicroscope objectives enablemagnification up to 2000 xandcanbeusedwithtransmittedandUVlight to imageandanalyzecellsassmallas1‐2microns.Transmittedlightmicroscopyhasdetectedprokaryoticcocci and rods,Dunaliella algae, pennate diatoms, carotenoids andwaxes inmodernacidlakehaliteandgypsum.UVflorescentresponseandlaserRamanspectroscopycharacterizeorganicsignatures.Fieldwork,pairedwithgeochemicalandmicrobiologicalanalyses,indicateshostconditionsformicrobialcommunities(i.e., Zaikovaetal., 2018).Permianhalite fromacid saline lakedeposits containsmicrobial featuressimilar tomoderncounterparts. Implications includenewunderstandingofearlyterrestriallifeandadvisementforthesearchforlifeonMars.Keywords:extremophiles,fluidinclusions,gypsum,halite,microorganismsAcknowledgements.ThisworkwassuportedbyNASAandNSFgrantstoKCB.

    References

    Benison,K.C.,&Karmanocky, F.J., III (2014). Couldmicroorganismsbepreserved inMarsgypsum?Insightsfromterrestrialexamples.Geology42(7):615‐618.

    Conner, A. J., & Benison, K.C. (2013). Acidophilic halophilicmicroorganisms in fluidinclusions in halite from Lake Magic, Western Australia. Astrobiology 13(9):850‐860.

    Zaikova,E.,Benison,K.C.,Mormile,M.R.,&Johnson,S.S.(2018).Microbialcommunitiesandtheirpredictedmetabolicfunctionsinadesiccatingacidsaltlake.Extremophiles22(1):367‐379.

  • STUDIAUNIVERSITATISBABEŞ‐BOLYAIBIO